

Plasma Wave Acceleration

Femtosecond pulse duration

Intrinsically short due to short plasma wavelength

GV/m acceleration gradients

No surface quality limitations $\rightarrow E_z$ in GV/m range

- The basic idea is there are enough problems with a PWFA e⁻ accelerator; e⁺ is even more difficult. Bypass this for e⁺e⁻ collider by using conventional linac for e⁺.
- For this to be attractive financially, conventional linac must be low energy => asymmetric energy machine.
- This requirement led to (at least for us) unexpected directions – the more asymmetric the machine became, the better!

Relativistic Refresher

$$E_e E_p = s/4 \tag{1}$$

and

$$E_e + E_p = \gamma \sqrt{s},\tag{2}$$

where E_e and E_p are the electron and positron energies, respectively, govern the kinematics. These two equations link three variables; fixing one therefore determines the other two. For a given choice of positron and centre-ofmass energy, the boost becomes

$$\gamma = \frac{1}{2} \left(\frac{2E_p}{\sqrt{s}} + \frac{\sqrt{s}}{2E_p} \right). \tag{3}$$

• It turns out that the (an) optimum (see below) for $E_{cm} = 250$ GeV is to pick $E_e = 500$ GeV, $E_p = 31$ GeV, which gives a boost in the electron direction of $\gamma \sim 2.13$.

B. Foster, EPS, 8/23

• Overall facility length ~ 3.3 km – which will fit on ~ any of the major (or even ex-major) pp labs. (NB. A service tunnel a la ILC is costed but not shown)

e- BDS

Energy Efficiency

- Asymmetric machines less energy efficient than symmetric energy lost "in accelerating the C.o.M." For equal bunch charges => 2.5 times more energy required for same C.o.M. energy.
- Can be reduced by introducing asymmetry into beam charges increase charge of low-energy beam and decrease high-energy s.t. $N^2 = N_e N_p$ constant => \pounds conserved.
- $P/P_0 = (N_e E_e + N_p E_p)/(N^* sqrt(s))$
- Optimum is to scale e⁺ charge by sqrt(s)/(2E_p), i.e. factor ~ 4.
- Producing so many e⁺ problematic compromise by scaling by factor 2 (2*e⁺, ½* e⁻).
- Reduces energy increase to 1.25. Also reduces bunch charge in PWFA arm.

Emittance reduction

- Geometric emittance of bunch scales with 1/E .
- Lower-energy e⁺ beam must have smaller β function at I.P. use $\beta_x / \beta_y = 3.3/0.1$ mm c.f. CLIC 8.0/0.1 mm.
- In contrast, high-energy e⁻ beam β function can be increased, which could reduce complexity of BDS.
- More interesting is to increase the e⁻ emittance AND reduce the β function => normalized emittance can be 16 times higher for the same $\mathcal{L} =>$ increased tolerances in PWFA arm.
- Beam-beam focusing effect on ⊥ must be simulated with Guinea Pig.

Beam-beam Effects

• Guinea-Pig results:

E (GeV)	σ_z (µm)	$N \ (10^{10})$	ϵ_{nx} (µm)	$\epsilon_{ny} (\mathrm{nm})$	$\beta_x \ (\mathrm{mm})$	$\beta_y \text{ (mm)}$	$\mathcal{L}~(\mu \mathrm{b}^{-1})$	$\mathcal{L}_{0.01} \; (\mu \mathrm{b}^{-1})$	P/P_0
125 / 125	300 / 300	2 / 2	10 / 10	35 / 35	13 / 13	0.41 / 0.41	1.12	0.92	1
31.3 / 500	300 / 300	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	0.93	0.71	2.13
31.3 / 500	75 / 75	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.04	0.71	2.13
31.3 / 500	75 / 75	4 / 1	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.04	0.60	1.25
31.3 / 500	75 / 75	4 / 1	10 / 40	35 / 140	3.3 / 13	0.10 / 0.41	1.01	0.58	1.25
31.3 / 500	75 / 75	4 / 1	10 / 80	35 / 280	3.3 / 6.5	0.10 / 0.20	0.94	0.54	1.25
31.3 / 500	75 / 75	4 / 1	10 / 160	35 / 560	3.3 / 3.3	0.10 / 0.10	0.81	0.46	1.25

• ILC

Beam-beam Effects

• Guinea-Pig results:

E (GeV)	$\sigma_z~(\mu{ m m})$	$N \ (10^{10})$	ϵ_{nx} (µm)	$\epsilon_{ny} (nm)$	$\beta_x \ (\mathrm{mm})$	$\beta_y \ (\mathrm{mm})$	$\mathcal{L}~(\mu \mathrm{b}^{-1})$	$\mathcal{L}_{0.01} \; (\mu \mathrm{b}^{-1})$	P/P_0
125 / 125	300 / 300	2 / 2	10 / 10	35 / 35	13 / 13	0.41 / 0.41	1.12	0.92	1
31.3 / 500	300 / 300	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	0.93	0.71	2.13
31.3 / 500	75 / 75	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.04	0.71	2.13
31.3 / 500	75 / 75	4 / 1	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.04	0.60	1.25
31.3 / 500	75 / 75	4 / 1	10 / 40	35 / 140	3.3 / 13	0.10 / 0.41	1.01	0.58	1.25
31.3 / 500	75 / 75	4 / 1	10 / 80	35 / 280	3.3 / 6.5	0.10 / 0.20	0.94	0.54	1.25
31.3 / 500	75 / 75	4 / 1	10 / 160	35 / 560	3.3 / 3.3	0.10 / 0.10	0.81	0.46	1.25

• ILC

• HALHF

Beam-beam Effects

• Guinea-Pig results:

E (GeV)	$\sigma_z~(\mu{ m m})$	$N \ (10^{10})$	ϵ_{nx} (µm)	ϵ_{ny} (nm)	$\beta_x \text{ (mm)}$	$\beta_y \text{ (mm)}$	$\mathcal{L}~(\mu \mathrm{b}^{-1})$	$ \mathcal{L}_{0.01} \ (\mu \mathrm{b}^{-1})$	P/P_0
125 / 125	300 / 300	2 / 2	10 / 10	35 / 35	13 / 13	0.41 / 0.41	1.12	0.92	1
31.3 / 500	300 / 300	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	0.93	0.71	2.13
31.3 / 500	75 / 75	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.04	0.71	2.13
31.3 / 500	75 / 75	4 / 1	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.04	0.60	1.25
31.3 / 500	75 / 75	4 / 1	10 / 40	35 / 140	3.3 / 13	0.10 / 0.41	1.01	0.58	1.25
31.3 / 500	75 / 75	4 / 1	10 / 80	35 / 280	3.3 / 6.5	0.10 / 0.20	0.94	0.54	1.25
31.3 / 500	75 / 75	4 / 1	10 / 160	35 / 560	3.3 / 3.3	0.10 / 0.10	0.81	0.46	1.25

• ILC

- HALHF
- HALHF with reduced emittance for PWFA

Positron Source

- "Conventional" e⁺ sources are not trivial that for ILC, which has relaxed requirements wrt HAHLF, still under development.
- e⁻ accelerated to 5 GeV and then collide with target to produce e+ which are accumulated, bunched and accelerated to 3 GeV and then damped in 2 rings (~identical to CLIC but bigger e⁺ bunch charge (4*10¹⁰ e⁺).
- May be possible to use spent e⁺ bunch after collision rather than dedicated e⁻ bunch, with cost savings.

- Split in 2, to accelerate e⁻ PWFA drive beams from 1 5 GeV & then both e⁺ and e⁻ from 5 GeV to 31.3 GeV.
- Assume gradient of 25 MV => 1.25 km long.
- Delivers total average power of 21.4 MW => including e⁺ power and $\epsilon \sim 50\%$, wall-plug 47 MW.
- Assume warm L-band linac CW SRF could be used but would change bunch pattern.
- Before drivers, e⁺ bunch accelerated with 180° phase offset.

PWFA Linac

- Drivers go through turn-around and then distributed to plasma cells via undulating delay chicane.
- Assuming TR ~ 1, e- bunch accelerated by 31 GeV/5m stage => 16 stages with ρ ~ 7*10^{15} => 6.4 GV/m.

PWFA Linac

- Drivers go through turn-around and then distributed to plasma cells via undulating delay chicane.
- Assuming TR ~ 1, e- bunch accelerated by 31 GeV/5m stage => 16 stages with ρ ~ 7*10^{15} => 6.4 GV/m.

PWFA Linac

- Drivers go through turn-around and then distributed to plasma cells via undulating delay chicane.
- Assuming TR ~ 1, e- bunch accelerated by 31 GeV/5m stage => 16 stages with ρ ~ 7*10^{15} => 6.4 GV/m.
- Interstage optics needs ~ <26.5m> but scales with sqrt(E).
- Total length of PWFA linac = 410m.

Bunch-train pattern.

• Assuming L-band linac:

DESY

John Adams Institute for Accelerator Science

HALHF Parameter Table

Machine parameters	Unit	Va	alue	
Center-of-mass energy	GeV	250		
Center-of-mass boost		2.13		
Bunches per train		1	00	
Train repetition rate	Hz	1	00	
Average collision rate	kHz	1	.0	
Luminosity	$\mathrm{cm}^{-2}\mathrm{s}^{-1}$	0.81 >	$\times 10^{34}$	
Luminosity fraction in top 1%		57	7%	
Estimated total power usage	MW	1	00	
Colliding-beam parameters		e^-	e^+	
Beam energy	GeV	500	31.25	
Bunch population	10^{10}	1	4	
Bunch length in linacs (rms)	$\mu { m m}$	18	75	
Bunch length at IP (rms)	$\mu { m m}$	75		
Energy spread (rms)	%	0.15		
Horizontal emittance (norm.)	$\mu { m m}$	160	10	
Vertical emittance (norm.)	$\mu { m m}$	0.56	0.035	
IP horizontal beta function	$\mathbf{m}\mathbf{m}$	3.3		
IP vertical beta function	$\mathbf{m}\mathbf{m}$	0.1		
IP horizontal beam size (rms)	nm	729		
IP vertical beam size (rms)	nm	7	.7	
Average beam power delivered	MW	8	2	
Bunch separation	ns	8	30	
Average beam current	μA	16	64	

$RF\ linac\ parameters$		
Average gradient	MV/m	25
Wall-plug-to-beam efficiency	%	50
RF power usage	MW	47.5
Peak RF power per length	MW/m	21.4
Cooling req. per length	kW/m	20
PWFA linac and drive-beam pa	rameters	
Number of stages		16
Plasma density	cm^{-3}	$7 imes 10^{15}$
In-plasma acceleration gradient	GV/m	6.4
Average gradient (incl. optics)	GV/m	1.2
Length per stage ^a	m	5
Energy gain per stage ^a	GeV	31.9
Initial injection energy	GeV	5
Driver energy	GeV	31.25
Driver bunch population	10^{10}	2.7
Driver bunch length (rms)	$\mu { m m}$	42
Driver average beam power	MW	21.4
Driver bunch separation	\mathbf{ns}	5
Driver-to-wake efficiency	%	72
Wake-to-beam efficiency	%	53
Driver-to-beam efficiency	%	38
Wall-plug-to-beam efficiency	%	19
Cooling req. per stage length	kW/m	100

^a The first stage is half the length and has half the energy gain of the other stages (see Section V. 4).

 Scale from existing costed projects wherever possible – mostly ILC – very rough – not better than 25% accurate.

Subsystem	Original	Comment	Scaling	HALHF	Fraction
	$\cos t$		factor	cost	
	(MILCU)			(MILCU)	
Particle sources, damping rings	430	CLIC cost [69], halved for e^+ damping rings only ^a	0.5	215	14%
RF linac with klystrons	548	CLIC cost, as RF power is similar	1	548	35%
PWFA linac	477	ILC cost [47], scaled by length and multiplied by $6^{\rm b}$	0.1	48	3%
Transfer lines	477	ILC cost, scaled to the ~ 4.6 km required ^c	0.15	72	5%
Electron BDS	91	ILC cost, also at 500 GeV	1	91	6%
Positron BDS	91	ILC cost, scaled by length ^d	0.25	23	1%
Beam dumps	67	ILC cost (similar beam power) + drive-beam $dumps^{e}$	1	80	5%
Civil engineering	2,055	ILC cost, scaled to the ~ 10 km of tunnel required	0.21	476	31%
			Total	1.553	100%

^a Swiss deflator from $2018 \rightarrow 2012$ is approximately 1. Conversion uses Jan 1st 2012 CHF to \$ exchange rate of 0.978.

^b Cost of PWFA linac similar to ILC standard instrumented beam lines plus short plasma cells & gas systems plus kickers/chicanes. The factor 6 is a rough estimate of extra complexity involved.

^c The positron transfer line, which is the full length of the electron BDS, dominates; this plus two turn-arounds, the electron transport to the positron source plus small additional beam lines are costed.

^d The HALHF length is scaled by \sqrt{E} and the cost assumed to scale with this length.

^e Length of excavation and beam line taken from European XFEL dump.

B. Foster, EPS, 8/23

 Snowmass study ITF of various accelerator costs gives ILC Higgs Factory Total Project Cost (TPC) (= US accounting) of \$7 - 12B (2021 \$). Scaling this by the value estimate (~European accounting) of HALHF/ILC@Snowmass gives HAHLF TPC ~ \$2.3 -3.9B: c.f. EIC TPC = \sim \$2.8B. Direct estimate by ITF people (Seeman/Gessner) gives \$4.46B.

n Adams Institute Accelerator Science

Running Costs

- Dominated by power to produce drive beams.
- (100*16*4.3nC + 6.4nC)*100 => 47.5 MW@50% eff.
- Damping rings: 2*10 MW.
- Cooling assume similar to CLIC => 50% of RF power (corresponds to 20 kW/m).
- For magnets and other conventional sources assume ~9 MW.
- Gives total power requirement ~ 100 MW similar to other proposals.

Experimentation at HALHF

- Boost is smaller than HERA - HERA detectors very similar to those at symmetric machines.
- Preliminary study (M. Berggren) with long ILD barrel shows ~ similar Higgs resolution.
- Measurement of £ via Bhabha (e⁺e⁻ -> e⁺e⁻)
 rate reduced by 1/(θγ)² & e⁺ scattered into barrel – but not a problem. Singles rate good for machine optimisation

• HALHF benefits from maximal asymmetry.

- HALHF benefits from maximal asymmetry.
- Even if e⁺ acceleration not a problem, HALHF could still be best way forward – but requires > a decade of significant R&D.

- HALHF benefits from maximal asymmetry.
- Even if e⁺ acceleration not a problem, HALHF could still be best way forward – but requires > a decade of significant R&D.
- Conventional design work needed: DR with high bunch charge; heavily loaded linac; BDS...

- HALHF benefits from maximal asymmetry.
- Even if e⁺ acceleration not a problem, HALHF could still be best way forward – but requires > a decade of significant R&D.
- Conventional design work needed: DR with high bunch charge; heavily loaded linac; BDS...
- PWFA R&D: higher accelerated charge (x ~10), higher repetition rate (x ~1000), plasma-cell power dissipation (x ~1000), beam jitter reduction (x ~10-100).

- HALHF benefits from maximal asymmetry.
- Even if e⁺ acceleration not a problem, HALHF could still be best way forward – but requires > a decade of significant R&D.
- Conventional design work needed: DR with high bunch charge; heavily loaded linac; BDS...
- PWFA R&D: higher accelerated charge (x ~10), higher repetition rate (x ~1000), plasma-cell power dissipation (x ~1000), beam jitter reduction (x ~10-100).
- Better start asap HALHF "kick-off" meeting @ DESY on 23.10.23

Backup Slides

HALHF Parameters cf ILC & CLIC

Parameter	er Unit HALHF		LHF	ILC	CLIC
		e^-	e^+	e^-/e^+	e^-/e^+
Center-of-mass energy	${ m GeV}$	2	50	250	380
Center-of-mass boost		2.	.13	-	-
Bunches per train		1	00	1312	352
Train repetition rate	Hz	1	00	5	50
Average collision rate	m kHz	1	10	6.6	17.6
Average linac gradient	MV/m	1200	25	16.9	51.7
Main linac length	\mathbf{km}	0.41	1.25	7.4	3.5
Beam energy	${ m GeV}$	500	31.25	125	190
Bunch population	10^{10}	1	4	2	0.52
Average beam current	μA	16	64	21	15
Horizontal emittance (norm.)	μm	160	10	5	0.9
Vertical emittance (norm.)	μm	0.56	0.035	0.035	0.02
IP horizontal beta function	$\mathbf{m}\mathbf{m}$	3	5.3	13	9.2
IP vertical beta function	$\mathbf{m}\mathbf{m}$	0	0.1	0.41	0.16
Bunch length	μm	7	75	300	70
Luminosity	$\mathrm{cm}^{-2}~\mathrm{s}^{-1}$	0.81	$ imes 10^{34}$	$1.35 imes 10^{34}$	$2.3 imes 10^{34}$
Luminosity fraction in top 1%		57	7%	73%	57%
Estimated total power usage	\mathbf{MW}	1	00	111	168
Site length	km	3	5.3	20.5	11.4

• Once satisfactory performance demonstrated, remaining elements can be constructed and then running at Z can be used to tune up machine and detector.

Upgrades

- Energy upgrade: keep e⁺ energy same increases γ as E increases – experiments more and more difficult; increasing e⁺ energy to keep γ ~ constant gives expensive linac.
- However, getting to ttbar threshold with same e⁺ energy => E(e-) ~ 1 TeV and γ ~ 2.9, still less than at HERA and ttbar final state even more spherical. Keeping γ constant by lengthening conventional linac needs E(e⁺) ~ 44 GeV and E(e⁻) ~ 700 GeV. (space allocated and tunnel already built both for linac &BDS).
- Produce e⁺ polarization via ILC-like scheme ideas exist for E(e⁻) 500 GeV.
 B. Foster, EPS, 8/23