

C

K. Long, 23 August, 2023 on behalf of the LhARA/ITRF collaboration

Laser-hybrid Accelerator for Radiobiological Applications

LhARA

the Laser-hybrid Accelerator for Radiobiological Applications

Our ambition is to:

- Deliver a systematic and definitive radiation biology programme
- Prove the feasibility of laser-driven hybrid acceleration
- Lay the technological foundations for the transformation of PBT
 - automated, patient-specific proton and ion beam therapy

Radiotherapy; the challenge

- Cancer: second most common cause of death globally
 - Radiotherapy indicated in half of all cancer patients
- Significant growth in global demand anticipated:
 - 14.1 million new cases in 2012 → 24.6 million by 2030
 - − 8.2 million cancer deaths in 2012 → 13.0 million by 2030
- Scale-up in provision essential:
 - Projections above based on reported cases (i.e. high-income countries)
 - Opportunity: save 26.9 million lives in low/middle income countries by 2035
- Provision on this scale requires:
 - Development of new and novel techniques ... integrated in a
 - Cost-effective system to allow a distributed network of RT facilities

The case for fundamental radiobiology

- Relative biological effectiveness:
 - Defined relative to reference X-ray beam
 - Known to depend on:
 - Energy, ion species
 - Dose & dose rate
 - Tissue type
 - Biological endpoint
- Yet:
 - p-treatment planning uses 1.1
 - Effective values are used for C⁶⁺
- Maximise the efficacy of PBT now & in the future:
 - Require systematic programme to develop full understanding of radiobiology

Radiobiology in new regimens

domain

Energy

Space Time The ideally domain flexible beam facility can deliver it all!

> \Rightarrow substantial opportunity for a step-change in understanding!

Multidisciplinary approach essential In combination and with chemo/immuno Therapies

Laser-hybrid Accelerator for Radiobiological Applications

A novel, hybrid, approach:

- Laser-driven, high-flux proton/ion source
 - Overcome instantaneous dose-rate limitation
 - Capture at >10 MeV
 - Delivers protons or ions in very short pulses
 - Bunches as short as 10-40 ns
 - Triggerable; arbitrary pulse structure
- Novel "electron-plasma-lens" capture & focusing

5-34 MeV/

- Strong focusing (short focal length) without the use of high-field solenoid
- Fast, flexible, fixed-field post acceleration
 - Variable energy
 - Protons: 15-127 Me
 - lons:

LhARA performance summary				<u>arXiv:2006.004</u>
	12 MeV Protons	15 MeV Protons	127 MeV Protons	33.4 MeV/u Carbon
Dose per pulse	7.1 Gy	12.8 Gy	15.6 Gy	73.0 Gy
Instantaneous dose rate	$1.0 imes 10^9$ Gy/s	$1.8 imes 10^9$ Gy/s	$3.8 imes 10^8$ Gy/s	$9.7 imes 10^8$ Gy/s
Average dose rate	71 Gy/s	128 Gy/s	156 Gy/s	730 Gy/s

LhARA to serve ITRF Preliminary Activity

Preliminary Activity: £2M over 2 years project start October 2022

Bid for next 4/5 year "pre-construction" project submitted

\Rightarrow compact, uniquely flexible facility

2-year Programme: Characterising Source and Benchmarking Simulations

....to build a systematic parameter space map of the source performance

• Energy, Flux, Divergence across multiple ion species

..but also need to consider some other experimental contributions like temporal contrast

E. Boella, N. Dover, R. Gray, C. Palmer et al

LhARA Capture

- "Electron-plasma" (Gabor) lens:
 - Strong focusing exploiting electron gas in "Penning/Malmberg" trap

Subsequent 3-year Programme: develop plasma parameters required for LhARA

Year 5 milestone

Beam envelopes Stage 1

Propagation of "semi-realistic" source distribution:
Optimisation studies on going

Rapid, flexible acceleration for stage 2

J. Pasternak, W. Shields et al

- Fixed-field alternating-gradient accelerator (FFA):
 - Compact, flexible solution:
 - Multiple ion species
 - Variable energy extraction
 - High repetition rate (rapid acceleration)
 - Large acceptance
 - Successfully demonstrated:
 - Proof of principle at KEK
 - Machines at KURNS
 - Non-scaling PofP EMMA (DL)

Opportunity to:

- Deliver a systematic and definitive radiation biology programme
- Prove the feasibility of laser-driven hybrid acceleration
- Lay the technological foundations for the transformation of PBT
 - automated, patient-specific proton and ion beam therapy

Thank you!