

Assembly, Test and Analysis Development of the T2K Near Detector Upgrade

Samira Hassani

CEA-Saclay/DRF-IRFU/DPhP, Université Paris – Saclay

On behalf of the T2K collaboration

EPS-HEP, Hamburg, August 21-25, 2023

Outline

1. Introduction

- 2. T2K Near Detector Upgrade
 - 1. 3D Fine-Grained scintillator
 - 2. High Angle Time Projection Chambers
 - 3. Time of Flight detector
- 3. Physics with the Near Detector Upgrade
- 4. Summary

Introduction

The T2K experiment: Tokai to Kamioka

- Main goals :
 - Measure v_e / \overline{v}_e appearance : sensitive to (θ_{13}, δ_{CP})
 - Measure $v_{\mu} / \overline{v_{\mu}}$ disappearance : sensitive to (θ_{23} , Δm^2_{32})
 - First hint of CP violation in the lepton sector : indication of maximal CP violation in neutrino oscillations $\delta_{CP} \sim -\pi/2$
- T2K aims to determine CPV at the 3σ level in the coming years

see talks by Yashwanth Prabhu & David Hadley

The role of the Near Detector

- The role of the Near Detector is to constrain the flux and cross-section systematics model by measuring neutrino interactions before the oscillations.
- T2K's approach is to propagate the constraints on the flux and the neutrino interaction models from the Near Detector to the Far Detector.
- The Near Detector has delivered quality measurements for T2K results, but as statistics increase, its limitations on flux and neutrino interaction model uncertainties are starting to emerge in the analyses.

Current Near Detector : ND280

ND280 :

- Used on its own for neutrino cross section measurements
- Used in the oscillation analysis to constrain systematic parameters related to the neutrino flux and neutrino interactions
- Detector installed inside the UA1/NOMAD magnet (0.2 T)
- A detector optimized to measure π^0 (P0D)
- An electromagnetic calorimeter to distinguish tracks from showers
- A tracker system composed by:
 - Two Fine-Grain-Detectors (FGD) as neutrino active target
 - FGD1 (scintillator)
 - FGD2 (scintillator: water)
 - 1.6 tons fiducial mass for analysis
 - Three vertical Time Projection Chambers:
 - Instrumented with bulk MicroMegas
 - 8% dE/dx resolution, 9% momentum resolution@1GeV/c

Limitations of current ND280

2 T2K Near Detector Upgrade

ND280 Upgrade Overview

ND280 upgrade group : 120 participants, 29 institutions, 11 countries including CERN

The goal is to reduce the ND280 systematics with :

- Fully active detector
- 4π acceptance for charged particles
- Detection of low energy protons and pions
- Detection of neutrons
- Electron/gamma separation

Three novel technologies in ND280

arXiv:1901.03750

Super-Fine Grain Detector (Super-FGD)

- Fully active, highly granular, 4π scintillator neutrino detector with 3D WLS/MPPC readout
 - Volume ~192 x 184 x 56 cm³
 - Total active weight about 2 tons of target
 - 2 million of optically isolated cubes, each $1 \times 1 \times 1 \text{ cm}^3$
 - Each cube has 3 orthogonal holes of 1.5 mm diameter
 - Cubes covered by reflector will be read out with 3 orthogonal WLS fibers each with MPPC on one end
 - \rightarrow total of ~ 60000 fibers

Super-FGD prototypes Performance

- Multiple beam tests using prototypes have been conducted :
 - At CERN with charged particles: NIMA 936 (2018), JINST 15, 12 (2020), JINST 18 (2023) P01012

Time resolution for a MIP \rightarrow Neutron energy

dE/dx for different particles

e / γ separation

Fulfills the requirements

Super-FGD prototypes Performance

- Multiple beam tests using prototypes have been conducted :
 - <u>At LANL with neutrons</u>: *Physics Letters B* 840 (2023) 137843
 - Measurement of the total neutron-CH cross section as a function of the neutron kinetic energy using event rate depletion along the beam axis.

US-Japan prototype (8x8x32 cm)

High-Angle Time Projection Chambers (HA-TPC)

- Two Field Cages joined at the central cathode plane.
- Each Field Cage is 175 x 84 cm² in size with a drift length of 99 cm.
- 16 Encapsulated Resistive Anode Micromegas (ERAM) modules read out the device at the two opposite Anodes.

The HA-TPC features :

- New field cage design to minimize dead space and maximize tracking volume.
- Replacement of standard bulk-MicroMegas with new resistive MicroMegas →improved spatial resolution using fewer pads.

2 Samira Hassani

Cathode

Anode plane with 8 ERAMs

Resistive Micromegas

High-Angle Time Projection Chambers (HA-TPC)

- Characterization of charge spreading (RC) and gain of ERAMs using X-ray at CERN.
 - Developed a detailed physical model enabling simultaneous extraction of gain and RC information of the ERAMs. e-Print: 2303.04481, https://doi.org/10.1016/j.nima.2023.168534
- Measurement of spatial and energy resolution through several test beam campaigns at CERN and DESY.
 - Achieved spatial resolution better than 800 μ m and dE/dx resolution better than 10%.

NIMA 957 (2020) 163286, NIMA 1025 (2022) 166109, NIMA 1052 (2023) 168248

Time-of-Flight (ToF) Detector

Goals :

- Precisely measure the crossing time of charged particles.
- Separate inward-going background from neutrino interaction products within the fiducial volume.
- Serve as a cosmic trigger for Super-FGD and HA-TPC calibration.
- Enhance particle identification through timing information.

JINST 17 (2022) 01, P01016

- 6 ToF planes will fully cover 2 HA-TPC and Super-FGD.
- Each plane consists of 20 scintillator bars (EJ200) of 12 × 1 × 230 cm³ size.
- Readout of 16 MPPC at both ends of each bar.

Single bar test with cosmic rays \rightarrow 140 ns time resolution

Status of ND280 Upgrade

Super-FGD at J-PARC. electronics installation, calibration, tests with cosmic muons on surface

Bottom HA-TPC was assembled at CERN and is scheduled for delivery to J-PARC in August 2023

TOF detector at J-PARC.

2 modules installed into the Near Detector pit

The upgraded ND280 will start collecting neutrino data in November 2023

Reconstruction Performance with ND280 Upgrade

Selection of v_{μ} CC Events

- Selection based on visible topologies (number of protons and pions in the final state).
- v_{μ} CC-inclusive : purity 94.6%, efficiency 64.7%
- v_{μ} CC0 π : purity 90.8% and proton selection purity 99.6%
- Developed selection of CC1π with Michel electron tagging, both in the case the pion track is reconstructed as well as without the track (access to pions below 100 MeV/c).

Improved Observables: Visible Energy

Currently, only lepton kinematics are used in energy reconstruction.

$$E_{
u}^{QE}=rac{m_{p}^{2}-\left(m_{n}-E_{b}
ight)^{2}-m_{\mu}^{2}+2\left(m_{n}-E_{b}
ight)E_{\mu}}{2\left(m_{n}-E_{b}-E_{\mu}+p_{\mu}\cos heta_{\mu}
ight)}$$

- Control of nuclear effects relies on inclusive model predictions.
- By reconstructing the proton as well, the visible energy provides a more accurate estimation of the neutrino energy.

$$E_{\text{vis}} = E_{\mu} + T_{p}$$
Phys. Rev. D 105,032010

$$E_{\text{vis}} = E_{\mu} + T_{p}$$
Using proton & lepton information

$$E_{\text{vis}} = E_{\mu} + T_{p}$$
Using proton & lepton information

Using lepton information

Using lepton information only

19

Only use

Can measure reliably

with ND280 Upgrade

 v_{μ}

W

Nuclear effects

muons currently

Improved Observables: Transverse Kinematic Imbalance

Transverse Kinematic Imbalance Variables

 \rightarrow Any deviation from $\delta p_T=0$ and $\delta \phi_T=0$

- The bulk probes Fermi motion
- The tail probes FSI and multi-nucleon processes

Summary

- T2K's near detector ND280 is undergoing an ambitious upgrade.
- The installation of the Upgraded ND280 detector is currently underway this summer and is anticipated to start collecting neutrino data in November 2023.
- ND280 Upgrade's low detection thresholds and full polar angle coverage will enable T2K to probe the complete final state of neutrino-nucleus interactions.
- The performances of the ND280 Upgrade are expected to open the door to precisely probe nuclear effects at an unprecedented level, in both current and next-generation experiments.