Probing new physics in $\tau-\mu$ sector through the LFU ratios $R^{\tau\mu}$

Ashutosh Kumar Alok, Neetu Raj Singh Chundawat, Arindam Mandal Department of Physics, IIT Jodhpur (Based on arXiv:2303.16606)

Motivation

The alluring quest for lepton flavor violating new physics finds a captivating avenue through the lepton flavor ratios of the $B \to K^{(*)} \ell^+ \ell^-$ ($\ell = e, \mu, \tau$) decay modes.

The ratios R_K and R_{K^*} can unfurl the intriguing interplay between muon and electron modes. The deviation of these ratios from their standard model (SM) values can be interpreted as a tantalizing hint for lepton flavor violating new physics.

We show that, in contrast, the lepton flavor ratios in the $\tau - \mu$ sector may deviate from its SM value even for a lepton flavor universal coupling.

For the current $b \to s\ell\ell$ data, we also demonstrate the ability to differentiate between solutions featuring solely universal couplings to leptons and those involving both universal and non-universal components.

Methodology

We assume new physics in the form of vector and axial-vector for which the effective Hamiltonian for $b \to s \ell^+ \ell^-$ decay can be written as

$$\mathcal{H}_{\text{eff}}^{\text{NP}} = -\frac{\alpha_{\text{em}} G_F}{\sqrt{2}\pi} V_{ts}^* V_{tb} \left[C_{9\ell} (\overline{s} \gamma^{\mu} P_L b) (\overline{\ell} \gamma_{\mu} \ell) + C_{10\ell} (\overline{s} \gamma^{\mu} P_L b) (\overline{\ell} \gamma_{\mu} \gamma_5 \ell) + C_{9\ell}' (\overline{s} \gamma^{\mu} P_R b) (\overline{\ell} \gamma_{\mu} \ell) + C_{10\ell}' (\overline{s} \gamma^{\mu} P_R b) (\overline{\ell} \gamma_{\mu} \gamma_5 \ell) \right] + H.c. ,$$

where $C_{(9,10)\ell}$ and $C'_{(9,10)\ell}$ are the new physics WCs having both universal and non-universal components:

$$C_{(9,10)e} = C_{(9,10)\tau} = C_{(9,10)}^{U}, \quad C_{(9,10)e}' = C_{(9,10)\tau}' = C_{(9,10)}^{U},$$

$$C_{(9,10)\mu} = C_{(9,10)}^{U} + C_{(9,10)\mu}^{V}, \quad C_{(9,10)\mu}' = C_{(9,10)}^{U} + C_{(9,10)\mu}^{V}.$$

- $C_{(9,10)\mu}^V = C_{(9,10)\mu}^{\prime V} = 0$, i.e we only have universal couplings (F-I).
- Both universal as well as non-universal couplings are present (F-II).

The parameter space of the WCs are constrained through a global fit to 179 observables in $b \to s\ell^+\ell^-$ decay. This includes the latest measurements of R_K and R_{K^*} by the LHCb Collaboration in December 2022.

F-I Solutions	WCs	1σ range	$\Delta \chi^2$
SU-I	C_9^U	-1.08 ± 0.18	27.90
SU-II	$C_9^U = -C_{10}^U$	-0.50 ± 0.12	18.85
SU-III	$C_9^U = -C_9^{'U}$	0.88 ± 0.16	26.92
F-II Solutions	WCs	1σ range	$\Delta \chi^2$
S-V	$C_{9\mu}^{V}$	(-1.31, -0.53)	
	$C_{10\mu}^{V}$	(-0.66, 0.07)	20.25
	$C_9^U = C_{10}^U$	(-0.13, 0.58)	
S-VI	$C_{9\mu}^{V} = -C_{10\mu}^{V}$	(-0.33, -0.20)	
	$C_9^U = C_{10}^U$	(-0.43, -0.17)	16.81
S-VII	$C_{9\mu}^{V}$	(-0.43, -0.08)	
	C_9^U	(-1.07, -0.58)	30.25
S-VIII	$C_{9\mu}^{V} = -C_{10\mu}^{V}$	(-0.18, -0.05)	
	C_9^U	(-1.15, -0.77)	31.36
S-IX	$C_{9\mu}^{V} = -C_{10\mu}^{V}$	(-0.27, -0.12)	
	C_{10}^U	(-0.09, 0.27)	12.96
S-X	$C_{9\mu}^{V}$	(-0.72, -0.41)	
	C_{10}^U	(0.05, 0.34)	21.16
S-XI	$C_{9\mu}^{V}$	(-0.82, -0.51)	
	$C_{10}^{\prime U}$	(-0.26, -0.04)	21.16
S-XIII	$C_{9\mu}^{V}$ $^-$	(-0.96, -0.60)	
	$C_{9\mu}^{\prime V}$	(0.22, 0.63)	
	$C_{9\mu}^{U} \ C_{10}^{U}$	(0.01, 0.38)	
	$C_{10}^{\prime U}$	(-0.08, 0.24)	26.01

Viable new physics solutions in F-I and F-II frameworks, where $\Delta \chi^2 = \chi^2_{\rm SM} - \chi^2_{\rm bf}$, with $\chi^2_{\rm bf}$ denoting the best-fit point and $\chi^2_{\rm SM} \approx 184$.

Variation of $R_{\nu(*)}^{\tau\mu}$ with universal WCs

Variation of $R^{\tau\mu}$ with universal couplings for new physics different scenarios:

- C_9^U scenario: $R_{\kappa(*)}^{\tau\mu}$ deviates from the SM.
- $C_9^U = -C_9^{U'}$ scenario: $R_K^{\tau\mu}$ closely aligns with the SM values, while $R_{K^*}^{\tau\mu}$ deviates from the SM predictions.
- $C_9^U = -C_9^{U'}$ scenario: $R_{K^{(*)}}^{\tau\mu}$ closely matches the SM predictions.

Differentiating the nature of new physics

A careful anatomization of these observables for the solutions corresponding to the two classes of new physics will be required to identify the new physics type:

Conclusions

- Unlike R_K and R_{K^*} , deviation in the lepton flavor ratio $R_{K^{(*)}}^{\tau\mu}$ from its SM value does not necessarily imply non-universal couplings.
- A discrimination between the two classes of new physics can be achieved by comparing the predictions of $R_{K^{(*)}}^{\tau\mu}$ for the currently allowed solutions.