An Overview of the CMS High Granularity Calorimeter

EPS-HEP 2023 - Hamburg

Gabriele Milella on behalf of the CMS collaboration 23.08.2023

Future at CERN: HL-LHC

Where we are

Future at CERN: HL-LHC A "bright" future

HL-LHC - Plan (Feb '22)

CMS during HL-LHC The challenges in the forward regions

- Radiation levels equivalent as in the region of the inner pixel trackers
 → Highest fluence of 10¹⁶ n_{eq}/cm² (2 MGy) after 3000 fb⁻¹
- Significant engineering demands
 - Dense calorimeter in tight space constraints
 - Fine lateral and longitudinal granularity
- **Unprecedented** number of trigger and data information
 - Online pileup mitigation needed
 - Dedicated offline reconstruction algorithm

→ Existing endcap calorimeter to be replaced by the **High Granularity Calorimeter**

The HGCAL Project

5D Imaging Calorimeter

- High Granularity Sampling Calorimeter
 - 5D imaging calorimeter: **3D spatial granularity, energy, timing information**
 - Two separated sections in one single detector
- Active Materials
 - Silicon Sensors (CE-E and CE-H)
 - Hexagonal 8" wafers
 - 6M pads (~620 m²)
 - Plastic Scintillators with SiPM readout (CE-H)
 - 240k scintillator tiles (~370 m²)
- Passive materials
 - Lead absorber plates, copper cooling plates, and CuW baseplates
 - Compact and dense object \rightarrow 225 T

HGCAL: 5D Imaging Calorimeter

Forward jet signatures from VBF

"The Phase-2 Upgrade of the CMS Endcap Calorimeter" Technical Design Report

From MIP calibration to showers

HGCAL: 5D Imaging Calorimeter

Forward jet signatures from VBF

Active Material - Silicon

Silicon Sensors

EPS-HEP 2023 | "An overview of the CMS High Granularity Calorimeter"

"Measurement of silicon-sensor prototypes for the CMS High-Granularity Calorimeter" ICHEP 2022

Outer Radius

Limit between

300µ and 200µ sensors

Active Material - Silicon Silicon Module

*PCB baseplate in the hadronic sector

pixel tracker

Hexaboard PCB

 \rightarrow Hosting the readout chip

Silicon Sensor

Metalized Kapton Sheet

 \rightarrow Bias supply to sensor back side

CuW BasePlate*

 \rightarrow Rigidity, contributes to the absorber material

Active Material - Scintillator SiPM-on-tile

Regions towards the rear

Cell sizes from 4 to 30 cm²

Tileboard (TB) PCB

Hosting the readout chip Wrapped Scintillating tile Reflective foil Silicon PhotoMultiplier (SiPM) Calibration with LED

More details in M.De Silva's Poster

HGCROC

Technical Design Report

- Front-end ASIC component
- Charge and time measurements
- Same design for Si and Scintillator with adaptations
- Two halves chip with 78 channels

HGCROC HGCROC

HGCROC HGCROC

HGCAL Full Readout Chain Signal Flow

ECONs

- Concentrator chips
- ECON-T:
 - Select/compress trigger data
 - Transmission every 40 MHz
- ECON-D:
 - Process full resolution data after trigger
 - Perform zero suppression
 - Transmission at 750 kHz

Engines/Wagons

- Active/Passive elements
- Hosting lpGBT/VTRX
 - Transmission to DAQ back-end
 - Clock distribution
 - Fast commands/Configurations

HGCAL Full Readout Chain

First test of the readout chain

Testbeam at CERN - August 02-09

- Two low density silicon modules tested with full readout chain
- ECON-T/D emulators

Full chain with ECONs ASIC to be tested in September testbeam at CERN

System Validation Silicon and SiPM-on-tile modules

CMS Work in Progress

Low Density

 \rightarrow Noise, S/N studies in testbeams

First **high density** module assembled and tested in December → Performance similar to

the low density modules

SiPM-on-tile

- Closed to final tileboard module commissioned and tested in test beams
 - S/N studies
 - Scintillator light yield calculations

Status of the Project

Preparation of mass production

Pre-series components

- Finalizing the design
- Qualifying manufacturer or process
- Not included in the installation
- Preparation for pre-production

Pre-production (2024)

- 5% of the total production
- Intended for the installation

In time for the scheduled lowering in 2027

Preparation of Mass Production

Tasks and Workflows

Silicon modules

- 26k modules in total
- Built and tested in 5 Module Assembly Centres (MACs)

SiPM-on-tile modules

- 240k SiPMs/tiles in total
- 3744 Tilemodules in total
- Built and tested in 2 Tilemodules Assembly Centers (TACs)

Outlook

Journey to the CMS 5D Imaging Calorimeter

Cutting-edge detector design

- High spatial granularity detector
- Precise timing for showers
- Energy measurements from MIP to showers
- >6M silicon & >200k scintillator channels in harsh environment
- Important progress and ongoing developments
 - System performance in testbeams and lab tests
 → Results in agreement with expectations
 → Full readout chain with all ASICs to be tested soon
 - Readiness for mass production
 → Most components close to final design

Outlook

Journey to the CMS 5D Imaging Calorimeter

Cutting-edge detector design

- High spatial granularity detector
- Precise timing for showers
- Energy measurements from MIP to showers
- >6M silicon & >200k scintillator channels in harsh environment
- Important progress and ongoing developments
 - System performance in testbeams and lab tests

 → Results in agreement with expectations
 → Full readout chain with all ASICs to be tested soon
 - Readiness for mass production
 → Most components close to final design

BACKUP

CMS during HL-LHC Upgrades overview

Timing Resolution Specifications

- $\sigma_t = \sigma_{jitter} \oplus \sigma_{floor}$
 - $\sigma_{jitter=} A / (S/N)$, $\sigma_{floor} \sim 20 \ ps$
 - 20 ps → targeted resolution
- Timing resolution **not** varying significantly with sensor thickness or radiation when the resolution is measured as a function of S/N

HGCAL Mechanics

CE-E Mechanics:

- Dense layering of cassettes, lead sheets, stacked on a stainless steel back-plate
- Mechanics in advanced design stage
 - To be made by CERN and industrial partners

- Layered stainless steel structure
- All raw steel plates and cylinders have been manufactured
 - Pre-production started in March 2023

Moderator (Polyethylene HDPE)

Z Bars (Stainless steel 316L)

Moderator supporting structure (Aluminum EN-AW 5083)

CE-E Inner support Cylinder (Aluminum)

Z bars connecting ring (Stainless steel 304 L)

CF-F Backdisk (Stainless steel 304L)

HGCROC HGCROC

"The Phase-2 Upgrade of the CMS endcap calorimeter" Technical Design Report

EPS-HEP 2023 | "An overview of the CMS High Granularity Calorimeter"

- Front-end ASIC component
- Same design for Si and Scintillator with adaptation

 \rightarrow conveyor gain used as pre-ampflier

- Two halves chip with 78 channels
- Low noise, large dynamic range
 → from MIP to showers
- Accommodating 12 µs of latency
 → L1 requirement
- High speed readout links → 1.28 Gb/s
- Radiation tolerance
- Low power consumption: ~20 mW
 → 125 kW per endcap

Simulation and Reconstruction

Offline reconstruction

Detector simulation

- Geometry close to the final design
- Sensor/Electronics provide full end-to-end simulation
- Reconstruction with realistic end-of-life conditions

Raw data unpacking

- Full unpacking in ~40ms
- First-level calibration exploiting GPU-compliant module

Reconstruction with TICL and CLUE-3D

- Iterative clustering
- RecHits → LayerClusters → Tracksters
- End-to-end Machine Learning
 - Noise filter
 - GravNet graph neural network performs clustering on cleaned data

Status of the Project

Summary of the principal components and Workflow

2018 Test Beam

Prototype – HGCAL and CALICE AHCAL

Setup

- HGCAL EM and hadronic sections
- CALICE AHCAL scintillator section
- SKIROC2-CMS ASIC (readout chip)

Beams

- e+, μ-, π- up to 300 GeV
- Measurements of the performance of energy resolution and timing

