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Precision timing in CMS for High Luminosity LHC
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® CMS is undergoing major upgrades to withstand
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MTD design

Thin and hermetic detector (jn|<3) between the tracker and the calorimeter with different specifications
contingent on radiation dose

—> employing diverse technologies to equip the barrel and the endcap areas of CMS:

Endcap Timing Layer (ETL): modules of Low Gain Avalanche Detectors (LGADs)

Barrel Timing Layer (BTL): arrays of LYSO crystal bars readout at both ends by SiPMs

BARREL

e Thin layer between tracker and calorimeters
e  MIP sensitivity with time resolution of 30-60 ps
e Hermetic coverage for |n|<3.0




BTL design

BTL Module:
1x16 crystals
(32 channels)

2 modules + TOFHIR ASIC (BTL Front End)

Detector module
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Crystal bar

»| 12 Detector Modules

3x8 modules
768 channels)

BTL Tray:

6 Read-out units || \SKID

(4608 channels) -
BTL detector
72 trays: 2(z) x 36(¢)
332k channels,

A

6 Readout Units

ASIC

Front End

| e~

Vv 4oL
i ®




BTL sensors

LYSO:Ce crystal

® large LY, fast scintillation rise time (<100 ps), short decay time (~40 ns)
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* bar-like geometry: 3 x 3 x 52 mm?

SiPM
® fast timing properties, magnetic field tolerant, compact and robust

® 15 pm cell size (initial design)

Module
® array of 16 crystal bars coupled to a pair of SiPMs through optical glue

®* modules will be exposed to an accumulated radiation levels of 50 kGy of

ionizing dose and a neutron fluence of 2 x 10** n_ /cm?

O No other large area experiment has ever used SiPMs in such a harsh radiation

environment




BTL sensor geometries

Modules exhibit different thicknesses depending on the

n

region: 3

Sensor

geometries

featuring crystal

thicknesses matching SiPM dimensions

type 1 (T1):

type 2 (T2):

type 3 (T3):
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2.40 mm

Slant thickness / x
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BTL performance
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Significant impact towards the end of operations in HL-LHC arises from VOV [V]

radiation-induced damage to SiPMs : Dark Count Rate ~ 10-30 GHz




Tackling Hi-Lumi challenges in BTL

Decreasing dark count rate

° Thermo-Electric Coolers integration on the SiPM packaging: lower

operational temperature and higher annealing temperature

integrated luminosity [fo
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¢ Increasing module thickness: increase in energy deposit (~25%) year (from the start of HL-LHC)

—> intense laboratory and test beam measurements focused on the validation of these studies




Larger cell size: non-irradiated sensors

CMS Phase-2 Preliminary
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Larger cell size: irradiated sensors

. _ . CMS Phase-2 Preliminary
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Thickening

®  Non-irradiated SiPMs with a cell size of 25 um were coupled to
LYSO arrays
O  Significant enhancement in time resolution observed from

type 3 to type 1

®  When subjected to irradiation, SiPMs with larger active area exhibit

hish DCR and increased power consumption —> crucial to

evaluate irradiated modules with different thicknesses

® Both T1 and T3 SiPMs, featuring a 25 um cell size, underwent
irradiation to half of the total radiation level (1 x 10" n_/cm?
O Enhanced performance of the thickest modules was

validated also in the case of irradiated SiPMs
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Towards the assembly

Prototyping phase concluded, ready for production!

® 4 BTL Assembly Centers (Milano-Bicocca, Caltech, U. Virginia and
Peking U.)
® Common tools for module assembly (e.g. gluing tools and tester

boards) are being finalized

® 2 trays/month production and testing @ each BAC and sent to CERN

®* Tray integration @ Tracker Integration Facility + tray test

® Final installation in the BTL Tracker Support Tube by May 2025

Commissioning in CMS starting in 2027
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Conclusions

® BTL prototyping phase now concluded

©AL
ACHIERS

CMS Phase-2 Preliminary

® Innovations in sensors design:

d TECS integration: reduced DCR — improved performance
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