Towards the validation and assembly of the CMS MTD Barrel Timing Layer

EPS-HEP 2023

European Physical Society Conference on High Energy Physics 2023

21-25 August, Hamburg (Germany)

22nd August 2023

Simona Palluotto for the CMS Collaboration

Table of contents

Towards the assembly

Precision timing in CMS for High Luminosity LHC

- CMS is undergoing major upgrades to withstand such harsh conditions:
 - MIP Timing Detector will enable the measurement of the time of arrival of charged particles

• New High Luminosity phase of LHC

$$\rightarrow$$
 $\mathcal{L}_{\text{ultimate}}$ up to ~ 7 x 10³⁴ cm⁻² s⁻¹

- \Rightarrow higher vertex density (up to x5) will lead to increases in:
- O Radiation damage
- O Pileup

MTD impact on physics

The addition of track-timing information from MTD will:

bring new capabilities to CMS

e.g. identifying charged particles based on the time-of-flight, searching for long lived particles etc.

 reduce tracks from pileup vertices that are incorrectly associated with the hard interaction vertex

Thus

- improving the efficiency in reconstructing the physics objects
 - O better *lepton isolation* efficiency
 - O reduced *pileup jet* rate
 - O improved *b-jet tagging* efficiency
- enhancing the significance of some benchmark cases e.g. measurement of Higgs boson self coupling

MTD design

Thin and hermetic detector ($|\eta|$ <3) between the tracker and the calorimeter with different specifications contingent on radiation dose

 \rightarrow employing diverse technologies to equip the barrel and the endcap areas of CMS:

- Endcap Timing Layer (ETL): modules of Low Gain Avalanche Detectors (LGADs)
- **Barrel Timing Layer** (BTL): arrays of LYSO crystal bars readout at both ends by SiPMs

BTL sensors

LYSO:Ce crystal

- large LY, fast scintillation rise time (<100 ps), short decay time (~40 ns)
- bar-like geometry: $3 \times 3 \times 52 \text{ mm}^3$

SiPM

- fast timing properties, magnetic field tolerant, compact and robust
- 15 µm cell size (initial design)

Module

- array of 16 crystal bars coupled to a pair of SiPMs through optical glue
- modules will be exposed to an accumulated radiation levels of 50 kGy of ionizing dose and a neutron fluence of $2 \times 10^{14} n_{eq}/cm^2$
 - O No other large area experiment has ever used SiPMs in such a harsh radiation environment

BTL sensor geometries

Modules exhibit different thicknesses depending on the η region: 3 sensor geometries featuring crystal thicknesses matching SiPM dimensions

• type 1 (T1): 3.75 mm

• type 2 (T2): 3.00 mm

• type 3 (T3): 2.40 mm

BTL performance

 $\sigma_{t}^{BTL} = \sigma_{t}^{clock} \oplus \sigma_{t}^{digi} \oplus \sigma_{t}^{ele} \oplus \sigma_{t}^{phot} \oplus \sigma_{t}^{DCR}$

Tackling Hi-Lumi challenges in BTL

Decreasing dark count rate

• *Thermo-Electric Coolers integration* on the SiPM packaging: lower operational temperature and higher annealing temperature

Reducing electronic noise contribution

• *SiPMs with a larger cell size*: increase in gain and PDE, faster rise time

Increase number of photoelectrons produced

• Increasing module thickness: increase in energy deposit (~25%)

 \rightarrow intense laboratory and test beam measurements focused on the validation of these studies

Larger cell size: non-irradiated sensors

- Modules with larger cell sizes confirmed to achieve the **best** performance
 - O Good agreement between test beam and laboratory measurements
- Contributions to time resolution from electronic noise and stochastic term well understood using non-irradiated sensor modules

Larger cell size: irradiated sensors

- SiPMs featuring a cell size of 20 and 25 μm :
 - irradiated to the total radiation level expected at the end of HL-LHC operation (2 x $10^{14} n_{eq}/cm^2$)
 - O assembled with LYSO arrays into sensor modules and tested at various temperatures to emulate different points of HL-LHC lifetime in terms of DCR
- Time resolution of ~ 65 ps achieved with both modules, close to the design performance target

Thickening

- Non-irradiated SiPMs with a cell size of 25 μ m were coupled to LYSO arrays
 - Significant enhancement in time resolution observed from type 3 to type 1
- When subjected to irradiation, SiPMs with larger active area exhibit high DCR and increased power consumption → crucial to evaluate irradiated modules with different thicknesses
- Both T1 and T3 SiPMs, featuring a 25 μm cell size, underwent irradiation to half of the total radiation level (1 x 10^{14} n_{eq}/cm^2)
 - Enhanced performance of the thickest modules was validated also in the case of irradiated SiPMs

Towards the assembly

Prototyping phase concluded, ready for production!

- *4 BTL Assembly Centers* (Milano-Bicocca, Caltech, U. Virginia and Peking U.)
- *Common tools* for module assembly (e.g. gluing tools and tester boards) are being finalized
- 2 trays/month production and testing @ each BAC and sent to CERN
- Tray integration @ Tracker Integration Facility + tray test
- Final installation in the BTL Tracker Support Tube by May 2025

Commissioning in CMS starting in 2027

Conclusions

- BTL prototyping phase now concluded
- Innovations in sensors design:

TECs integration: reduced DCR \rightarrow improved performance

 \square 25 µm cell size SiPM: improved performance compared to 15 µm

Thickest module: better timing performance both at BoO and EoO

 Performance of the final prototypes aligned with the design target

