Scintillating sampling ECAL technology for the LHCb PicoCal

Matteo Salomoni, on behalf of the LHCb ECAL Upgrade II group.

August 23rd 2023, EPS Hamburg

Current LHCb ECAL configuration

- \cdot Optimised for π^0 and γ identification in the few GeV to 100 GeV region at 2 x 10^{32} cm^{-2}s^{-1}
- Shashlik technology:
 - Radiation hard up to 40 kGy
 - Energy resolution: $\sigma(E)/E \approx 10\%/\sqrt{E} \oplus 1\%$

• Large array of \approx 50 m² with 3312 modules and 6016 channels

 \rightarrow three square sections:

- 176 modules with $4 \times 4 \text{ cm}^2$ cell size
- **448** modules with $6 \times 6 \text{ cm}^2$ cell size

2688 modules with 12 x 12 cm^2 cell size

Requirements for ECAL Upgrade II

- 1. Sustain radiation doses up to 1 MGy and $\leq 6 \times 10^{15}$ 1 MeV n_{eq} /cm²
- 2. Pile-up mitigation
 - \rightarrow Timing capabilities with O(10) ps precision
 - \rightarrow Increased granularity in the central region with denser absorber
- 3. Keep current energy resolution of $\sigma(E)/E \approx 10\%/\sqrt{E \oplus 1\%}$

(double-sided readout)

(double-sided readout)

Radiation limit of current Shashlik technology

- Innermost modules (> 200 kGy) with scintillating crystal fibers and **W absorber**
 - → Development of radiation-hard scintillating crystal fibers, 1.5x1.5 cm² cell size.
 Both regions are tilted 3+3 degrees
- • 40-200 kGy region with scintillating plastic fibers and **Pb absorber**
 - → Longitudinal segmentation can mitigate the radiation damage.

(double-sided readout)

Radiation limit of current Shashlik technology

- Innermost modules (> 200 kGy) with scintillating crystal fibers and W absorber
 - Development of radiation-hard \rightarrow scintillating crystal fibers, 1.5x1.5 cm² cell size. Both regions are tilted 3+3 degrees
- • 40-200 kGv region with scintillating plastic fibers and Pb absorber
 - \rightarrow Longitudinal segmentation can mitigate the radiation damage.

Shashlik for outer regions (**I**, **I**, **I**):

- Timing with new WLS fibers
- Cost optimisation by refurbishing existing modules for
- timing could be possible

(double-sided readout)

LS3 enhancement (single-sided readout):

equipped with scintillating plastic fibers for 2x2 cm² cell size. same. , only existing modules.

SpaCal

Strategy motivation

LS3 enhancement:

Run 3 with Shashlik modules at $L=2 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1}$ will already suffer enough radiation damage to increase the constant term of the modules:

LS4:

(on top of high rad. tolerant scintillator and time resolution implem.) <u>Benefits of double-side readout</u>: radiation hardness, time resolution, events reconstruction and particle ID.

Effect of improved granularity

Simulated LS3 conditions, assuming a luminosity: $L = 2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ and including the hadronic component: (No time resolution information used)

- → Sizeable occupancy in large regions before LS3 (Run 3) (e.g. challenge for neutral pion reconstruction)
- → Occupancy map after LS3 enhancement reasonably flat.

Physics performance: $B^0 \rightarrow K^{*0}\gamma$

Reshuffled Shashlik region:

→ As expected, the rearrangement of the modules produces just small improvement in S/B SpaCal region (35% of the photons from $B^0 \rightarrow K^{*0}\gamma$ decays):

- \rightarrow improvement due to the smaller cell sizes in Run 4.
- → combinatorial background expected for the Run 3 detector strongly increases with the radiation damage.

Effect of improved time resolution

 $D^0 \rightarrow \pi^+\pi^-\pi^0$:

→ time resolution of O(10) ps in the SpaCal region would improve significance by ~10% after LS3 $B^0 \rightarrow K^{*0}\gamma$:

→ time resolution cut is expected to improve mass resolution in Upgrade II

From LHCb TDR 23 https://cds.cern.ch/record/2776420/files/LHCB-TDR-023.pdf From LHCb TDR 24 https://cds.cern.ch/record/2866493/files/LHCB-TDR-024.pdf

Matteo Salomoni

EPS 2023

Shashlik: R&D towards Upgrade II

Prototype: SpaCal-Pb LS4

9-cell double-side readout prototype:

- 3x3 cm² cells
- Lead absorber
- Kuraray polystyrene scintillating fibers SCSF-78, single cladding, round section
- Fiber dimension: 1 mm
- Pitch between fibers: 1.67 mm
- Total length: 29 cm, 25 X₀ (8 front section + 21 back section in LS4)

PMTs:

Hamamatsu R7600U-20 metal channel dynode (MCD) PMT

Prototype: SpaCal-Pb LS4

Test beam results:

- Time resolution of 20 ps at 20 GeV (front and back section weighted average, seed cell)
- $\sigma(E)/E = (10.0 \pm 0.6)\%/\sqrt{E} \oplus (1.2 \pm 0.1)\%$
- Good matching with simulations (with noise term subtraction)

Prototype: SpaCal-W LS4

Pure tungsten absorber with 19 g/cm³

- Crystal garnet scintillating fibers (1x1 cm², cut from ingot)
- 9 cells, each 1.5 x 1.5 cm² (RM ≈ 1.45 cm)
- Longitudinal segmentation at the shower maximum
- 4 + 10 cm long split (7+18 X_0), pitch 1.7 mm
- Reflective mirror between sections
- Two photodetectors readout:
 - Energy resolution: Hamamatsu R12421 → (10.2 ± 0.1)% ⊕ (1.2 ± 0.3)%.
 - Timing resolution: Hamamatsu R7600U-20 metal channel dynodes ---- 20 ps @ 5 GeV

Energy resolution (DESY 2020, R12421)

Time resolution (DESY 2020, R7600-20)

Matteo Salomoni

Prototype: SpaCal-W for LS3

36-cell prototype:

- 2x2 cm² cells
- 3D printed tungsten absorber
- Kuraray polystyrene scintillating fibers SCSF-78, single cladding, square section
- Fiber dimension: square, 1 mm
- Pitch between fibers: 1.67 mm
- Single section, continuous fibers.
- Total length: 19 cm
- Energy resolution: (9.9 ± 0.1)% ⊕ (1.11 ± 0.02)%.
- Timing resolution: 20 ps @ 40 GeV

FPS 2023

Matteo Salomoni

From LHCb TDR 24 https://cds.cern.ch/record/2866493/files/LHCB-TDR-024.pdf

16

SpaCal-W for LS3

SpaCal-W for LS3

SpaCal-W for LS3

Option being investigated: multi-anode PMT R7600-M4, Hamamatsu MCD technology

R14755U-100

SpaCal-W for LS3

Matteo Salomoni

EPS 2023

Matteo Salomoni

FPS 2023

Conclusions

- 1. The expected radiation damage requires the replacement of 176 ECAL modules in LS3
- 2. Prototypes performance at test beam level for LS3 (single readout, plastic fibers) and LS4 (double-side readout, rad hard up to 1 MGy in the innermost region):
 - a. The **SpaCal-W** and **SpaCal-Pb** prototypes proposed for installation during LS3 and LS4
 - i. energy resolution in line with requirements
 - ii. time resolution better than 20 ps above 20 GeV for SpaCal double-side readout, 20 ps above 40 GeV for single-side readout.
 - b. The **Shashlik** modules will be reshuffled during LS3 and could be refurbished in LS4
 - i. Time resolution with improved WLS and double-side readout shows better than 30 ps above 20 GeV.
- → Good match with LS3 enhancement and Upgrade II requirements
- 3. Detailed simulations on occupancies and physics benchmark channels motivate both upgrades further.

Backup

Shashlik: current properties

Physics performance: $D^0 \rightarrow \pi^+\pi^-\pi^0$

For "resolved" neutral pions.

Reshuffled Shashlik region:

→ rearrangement of the modules produces small differences

SpaCal region (28% of the neutral pions):

→ improved granularity of the SpaCal technology is needed to reconstruct neutral pions in the inner region.

