Scintillating sampling ECAL technology for the LHCb PicoCal

Matteo Salomoni, on behalf of the LHCb ECAL Upgrade II group. August $23^{\text {rd }} 2023$, EPS Hamburg

Current LHCb ECAL configuration

- Optimised for $\boldsymbol{\pi}^{0}$ and \boldsymbol{y} identification in the few GeV to 100 GeV region at $2 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

Shashlik

- Shashlik technology:
- Radiation hard up to 40 kGy
- Energy resolution: $\sigma(E) / E \approx 10 \% / \sqrt{ } E \oplus 1 \%$
- Large array of $\approx 50 \mathrm{~m}^{2}$ with 3312 modules and 6016 channels
\rightarrow three square sections:
176 modules with $4 \times 4 \mathrm{~cm}^{2}$ cell size
448 modules with $6 \times 6 \mathrm{~cm}^{2}$ cell size
2688 modules with $12 \times 12 \mathrm{~cm}^{2}$ cell size

Requirements for ECAL Upgrade II

1. Sustain radiation doses up to 1 MGy and $\leq 6 \times 10^{15} 7 \mathrm{MeV} \mathrm{n}_{\mathrm{eq}} / \mathrm{cm}^{2}$
2. Pile-up mitigation
\rightarrow Timing capabilities with O (10) ps precision
\rightarrow Increased granularity in the central region with denser absorber
3. Keep current energy resolution of $\sigma(E) / E \approx 10 \% / \sqrt{ } E \oplus 1 \%$

Sampling calo technology for Upgrade II:

Radiation limit of current Shashlik technology

Sampling calo technology for Upgrade II:

(double-sided readout)

Radiation limit of current Shashlik technology

SpaCal for inner regions (32 ■, 144回):

- \square Innermost modules (> 200 kGy) with scintillating crystal fibers and W absorber
\rightarrow Development of radiation-hard scintillating crystal fibers, $1.5 \times 1.5 \mathrm{~cm}^{2}$ cell size. \quad Both regions are tilted $3+3$ degrees
- $\mathbf{\square}$ 40-200 kGy region with scintillating plastic
fibers and Pb absorber
$\rightarrow \quad$ Longitudinal segmentation can mitigate the radiation damage.

Sampling calo technology for Upgrade II:

(double-sided readout)

Radiation limit of current Shashlik technology

SpaCal for inner regions ($32 \square$, 144 回):

- $\square_{\text {Innermost modules (> } 200 \mathrm{kGy} \text {) with }}$ scintillating crystal fibers and W absorber
\rightarrow Development of radiation-hard scintillating crystal fibers, $1.5 \times 1.5 \mathrm{~cm}^{2}$ cell size. \quad Both regions are tilted $3+3$ degrees - $40-200 \mathrm{kGy}$ region with scintillating plastic fibers and Pb absorber
$\rightarrow \quad$ Longitudinal segmentation can mitigate the radiation damage.

Shashlik for outer regions ($\boxed{\square}, ~ \boxed{\square}$):

- Timing with new WLS fibers
- Cost optimisation by refurbishing existing modules for timing could be possible

Sampling calo technology for Upgrade II:

(double-sided readout)

Radiation limit of current Shashlik technology

SpaCal for inner regions (32 ■, 144 『) :

- \square Innermost modules (> 200 kGy) with scintillating crystal fibers and W absorber
\rightarrow Development of radiation-hard scintillating crystal fibers, $1.5 \times 1.5 \mathrm{~cm}^{2}$ cell size. \quad Both regions are tilted $3+3$ degrees
- \square 40-200 kGy region with scintillating plastic
fibers and Pb absorber
$\rightarrow \quad$ Longitudinal segmentation can mitigate the radiation damage.

Shashlik for outer regions ($\boxed{\square}, ~ \boxed{\square}$):

- Timing with new WLS fibers
- Cost optimisation by refurbishing existing modules for timing could be possible

LS3 enhancement (single-sided readout):

\square equipped with scintillating plastic fibers for $2 \times 2 \mathrm{~cm}^{2}$ cell size. \square same. \square, \square, \square only existing modules.

Strategy motivation

LS3 enhancement:

Run 3 with Shashlik modules at $L=2 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ will already suffer enough radiation damage to increase the constant term of the modules:

Constant term [\%] at the end of 2025 (28/fb)

LS4:
(on top of high rad. tolerant scintillator and time resolution implem.) Benefits of double-side readout: radiation hardness, time resolution, events reconstruction and particle ID.

Effect of improved granularity

Simulated LS3 conditions, assuming a luminosity: $L=2 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ and including the hadronic component: (No time resolution information used)

$\rightarrow \quad$ Sizeable occupancy in large regions before LS3 (Run 3) (e.g. challenge for neutral pion reconstruction)
\rightarrow Occupancy map after LS3 enhancement reasonably flat.

Physics performance: $B^{0} \rightarrow K^{* 0} Y$

Reshuffled Shashlik region:

$\rightarrow \quad$ As expected, the rearrangement of the modules produces just small improvement in S / B SpaCal region (35\% of the photons from $B^{0} \rightarrow K^{* 0} Y$ decays):
$\rightarrow \quad$ improvement due to the smaller cell sizes in Run 4.
\rightarrow combinatorial background expected for the Run 3 detector strongly increases with the radiation damage.

Effect of improved time resolution

$\mathrm{D}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}:$
\rightarrow time resolution of $O(10)$ ps in the SpaCal region would improve significance by $\sim 10 \%$ after LS3 $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{* 0} \mathrm{Y}:$
\rightarrow time resolution cut is expected to improve mass resolution in Upgrade II

Shashlik: R\&D towards Upgrade II

Energy resolution: better than 10\%/VE $\oplus 1 \%$ Time resolution: 20 ps at 100 GeV with YS4 Moliere radius: 3.6 cm
Length: $42 \mathrm{~cm}\left(25 \mathrm{X}_{0}\right)$
Double-side readout
YS2 or YS4 WLS
Hamamatsu R7600-U20/R11187 PMT
Radiation tolerance: up to 40 kGy

Prototype: SpaCal-Pb LS4

9-cell double-side readout prototype:

- $3 \times 3 \mathrm{~cm}^{2}$ cells
- Lead absorber
- Kuraray polystyrene scintillating fibers SCSF-78, single cladding, round section
- Fiber dimension: 1 mm
- Pitch between fibers: 1.67 mm
- Total length: $29 \mathrm{~cm}, 25 \mathrm{X}_{0}$ (8 front section +21 back section in LS4)

PMTs:

Hamamatsu R7600U-20 metal channel dynode (MCD) PMT

Prototype: SpaCal-Pb LS4

Test beam results:

- Time resolution of 20 ps at 20 GeV (front and back section weighted average, seed cell)
- $\quad \sigma(E) / E=(10.0 \pm 0.6) \% / \sqrt{ } E \oplus(1.2 \pm 0.1) \%$
- Good matching with simulations (with noise term subtraction)

Time Resolution Pb/Polystyrene $-3^{\circ}+3^{\circ}$

Energy resolution Pb/Polystyrene

Prototype: SpaCal-W LS4

Pure tungsten absorber with $\mathbf{1 9} \mathbf{~ g} / \mathrm{cm}^{3}$

- Crystal garnet scintillating fibers ($1 \times 1 \mathrm{~cm}^{2}$, cut from ingot)
- $\quad 9$ cells, each $1.5 \times 1.5 \mathrm{~cm}^{2}(\mathrm{RM} \approx 1.45 \mathrm{~cm})$
- Longitudinal segmentation at the shower maximum
- $\quad 4+10 \mathrm{~cm}$ long split $\left(7+18 \mathrm{X}_{0}\right)$, pitch 1.7 mm
- Reflective mirror between sections
- Two photodetectors readout:
- Energy resolution: Hamamatsu R12421 $\ldots \rightarrow(10.2 \pm 0.1) \% \oplus(1.2 \pm 0.3) \%$.

- Timing resolution: Hamamatsu R7600U-20 metal channel dynodes $-20 \mathrm{ps} @ 5 \mathrm{GeV}$

Energy resolution (DESY 2020, R12421)

Prototype: SpaCal-W for LS3

36-cell prototype:

- $2 \times 2 \mathrm{~cm}^{2}$ cells

- 3D printed tungsten absorber
- Kuraray polystyrene scintillating fibers SCSF-78, single cladding, square section
- Fiber dimension: square, 1 mm
- \quad Pitch between fibers: 1.67 mm
- \quad Single section, continuous fibers.
- Total length: 19 cm
- Energy resolution: $(9.9 \pm 0.1) \% \oplus(1.11 \pm 0.02) \%$.

- Timing resolution: $20 \mathrm{ps} @ 40 \mathrm{GeV}$

Matteo Salomoni
EPS 2023

Time resolution W/poly - $3+3$ deg

SpaCal-W for LS3

Option being investigated: multi-anode PMT R7600-M4, Hamamatsu MCD technology

SpaCal-W for LS3

Conclusions

1. The expected radiation damage requires the replacement of 176 ECAL modules in LS3
2. Prototypes performance at test beam level for LS3 (single readout, plastic fibers) and LS4 (double-side readout, rad hard up to 1 MGy in the innermost region):
a. The SpaCal-W and SpaCal-Pb prototypes proposed for installation during LS3 and LS4
i. energy resolution in line with requirements
ii. time resolution better than 20 ps above 20 GeV for SpaCal double-side readout, 20 ps above 40 GeV for single-side readout.
b. The Shashlik modules will be reshuffled during LS3 and could be refurbished in LS4
i. Time resolution with improved WLS and double-side readout shows better than 30 ps above 20 GeV .
\rightarrow Good match with LS3 enhancement and Upgrade II requirements
3. Detailed simulations on occupancies and physics benchmark channels motivate both upgrades further.

Shashlik: current properties

Single
readout with loop

Energy resolution: better than 10\%/VE $\oplus 1 \%$ Moliere radius: 3.6 cm
Length: $42 \mathrm{~cm}\left(25 \mathrm{X}_{0}\right)$
Low activation
Single side readout
Yוl WLS fibers
Hamamatsu R7899-20 PMT
Radiation tolerance: up to 40 kGy

Physics performance: $\mathrm{D}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$

For "resolved" neutral pions.

Reshuffled Shashlik region:

\rightarrow rearrangement of the modules produces small differences

SpaCal region (28\% of the neutral pions):
$\rightarrow \quad$ improved granularity of the SpaCal technology is needed to reconstruct neutral pions in the inner region.

