
A	detector	for	top-energy	DIS	

Adnan	Kilic	(Bursa	Uludağ	University)	
	

on	behalf	of	the	LHeC/FCCeh	Study	Group	
	
	

(remote	presentation)



Outline	of	this	talk

• Introduction:	LHeC	/	FCC-eh	parameters	and	detector	studies	

• 	physics,	collision	kinematics	and	detector	requirements	

– for	DIS	and	for	Higgs	/	EW	/	Top	/	BSM	physics	

• LHeC	baseline	detector	and	extensions	for	FCC-eh	

– Central	tracker	and	beam	pipe	

– Calorimetry	

– Interaction	point	and	magnet	

• Design	of	the	interaction	region	for	concurrent		 			and			 		operation	

• Adapting	LHeC/FCC-eh	detector	for	

𝑒𝑝/𝑒𝐴

𝑒𝑝/𝑒𝐴 𝑝𝑝/𝑝𝐴 /𝐴𝐴
hh
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60	GeV(e)	 	20–50	TeV	(p)				7.9–19.7	TeV/nucl.	(A)	

• 		or	 	TeV	

• 	
• Electrons	via	3-track	ERL

×
𝑠 = 2.2 − 3.5 (𝑝) = 1.4 − 2.2 (A)

1034 cm−2s−1
3

• Electrons	from	dedicated	Energy	Recovery	Linac	(ERL)	

• Hadrons	from	LHC/FCC	rings

LHeC	baseline:	
50	GeV(e)	 	7	TeV	(p)				2.76	TeV/nucl.	(A)	

• 		or	 	TeV	

• 	
• Electrons	via	3-track	ERL		

~1/4	of	LHC	circumference	

×
𝑠 = 1.18 (𝑝) = 0.74 (A)

1033 − 1034 cm−2s−1

LHeC FCC-eh

Ref	[1]

The LHeC and FCC-eh accelerators
ERL	Roadmap	see	talk	J.	D’Hondt

https://indico.desy.de/event/34916/contributions/147059/


• High	x	and	high	Q2:	few	TeV	HFS	scattered	forward:	
• →	Need	forward	calorimeter	of	few	TeV	energy	range	down	to	10	
• Mandatory	for	charged	currents	where	the	outgoing	electron	is	missing	
• Scattered	electron:																																																																																																																																					
Need	very	bwd.	angle	acceptance	for	accessing		
the	low	Q2	and	high	y	region

LHeC	–	electron	kinematics

Θe=170°

Θe=20
°

Θe=179°

LHeC	–	jet	kinematics

Θ h
=1
70
°

Θ h
=9
0°

Θ h
=1
0°

Θ h
=1
°

DIS	Kinematics

Asymmetric energy flow
particles go mostly to incoming proton direction (forward), 𝑒 to backward 
But they go to everywhere in practice, especially towards small angles 4



All	measured	with	small	event	pile-up	and		
well-controlled	detector		
–	redundant	kinematics	from	e	and	jet:	also	for	calibration

DIS	kinematic	plane	and	event	topology
Ref	[1],	[2]

5

Structure	of	nucleon	and	nuclei	through	DIS	
•Higgs	couplings;	physics	in	CC	and	NC	DIS		
•Precision	EW	and	QCD	physics	(e.g.:		αs	,	top	production,	…)	
•BSM	physics	
–	Leptoquarks,	heavy	neutrinos,	…	
	
see	physics	talks	@	EPS2023:	D.	Britzger,	F.	Giuli,	M.	D’Onofrio

𝑥

𝑄2

https://indico.desy.de/event/34916/contributions/147237/
https://indico.desy.de/event/34916/contributions/147002/
https://indico.desy.de/event/34916/contributions/147700/


Covering	from	1	to	179	
degrees	

All-silicon	tracker	
extended		

forward	wheels	

EM	calorimeter	
	
	

Solenoid	and	dipole	

HCAL		
	
	

					Muon		
					system	embedded	in			
					return	yoke	

		+	Forward/backward				
		detectors	(p/n/e/γ-tagger)	
		along	beamline

Aiming	for	compact,	modular	and	very	hermetic	detector

Covering	wide	 	
with	small	

𝜂
𝑋0

rad-hard	very	forward	Plug	Calo	
	
fine	segmented	EM	calo	
high	granularity:	support	of	energy	flow	
measurement,	tracking	calorimetry

Good	resolution	for	HCAL

6

Calorimeter Baseline 
configurations

EM barrel LAr

Had barrel + Endcap Sci-Fe

EM+Had forward Plug Si-W

EM+Had backward Plug Si-Pb/-Cu

The	baseline	LHeC	detector

Ref	[2]



Interaction	Point	and	Magnets

• Dipole	magnet	integrated	in	the	detector		
to	bend	electron	beam	

– Beam-1	 	and	 brought	in	head-on	collisions		

– Beam-2	in	a	different	plane	

• Detector	needs	to	be	away	and	shielded	from		
the	synchrotron	radiation	fan

𝑝 𝑒 

Synchrotron	radiation	fan	(orange)		
-	optimised	optics

 beam𝑒

 beam 1𝑝

7FCC	Conference	London	Ref.	[4]



Barrel	sensors	and	beampipe	(version	LHeC)
• Circular-elliptical	beam-pipe	to	accommodate	synchrotron	radiation	fan	
• Innermost	sensor	layers	are	bent	(like	developed	for	ALICE3)

4 strip layers

4 macro-pixel layers 
1 pixel circ.-elliptical-layer

1 pixel circ.-elliptical-layer

circular-elliptical beam pipe

4 macro-pixel layers 
1 pixel circ.-elliptical-layer

1 pixel circ.-elliptical-layer

circular-elliptical beam pipe

[	Efforts	from	DRDT	8.3	(ultra-light	stable	high	precision	mechanics,	Machine-detector	interfaces)	should	be	pursued	(from	ECFA	Detector	Roadmap)	]

x=2.2cm

-x=100mm+x=22mm

-y=22mm

+y=22mm
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LHeC	Calorimetry
• High-performance	barrel	( "cold"	option	

– Baseline:	LAr	EMC	inside		
solenoid	with	shared	cryostat	

– R&D	ongoing	to	make	the	barrel	layer	thinner,		
also	cryostat	(goal:	a	few	%	of	 )	

– HadCal	uses	scintillator	for	good	e/h	identification		
(scintillating	plastic	tiles	and	iron	plates)	

• Fine-segmented	plugs	with	compact	shower	with	Si	sensor	

– technology	developed	for	ILC	/	FCC-ee;	energy	flow	meas.	
support	&	tracking	capability	

• "warm"	option	

– Sci-Pb	→	modular	(installation	inside	the	L3	magnet)	

– Comparable	performance:	LAr	still	advantageous	
for	resolution,		segmentation,	long	term	&	radiation	stability

𝜂 < 2.8) 

𝑋0
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Baseline configuration  coverage angular coverage

EM barrel LAr -2.3 < η < 2.8 6.6° — 168.9°

Had barrel + Endcap Sci-Fe (~ behind EM barrel)

EM+Had forward Plug Si-W 2.8 < η < 5.5 0.48° — 

EM+Had backward Plug Si-Pb/Si-Cu -2.3 < η < -4.8 -179.1°

Complete	coverage	to	+-	5	in	(pseudo)rapidity	
EMC	Central	Region:				2012:	LAr,				2020:	Sci/Pb	option	

Forward	Region:	dense,	high	energy	jets	of	few	TeV	
H	=	bbbar	and	other	reactions	demand	resolution	of	HFS	

Backward	Region:	significant	lower	energy	deposited
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Detector	design	for	FCC-eh	–	extension	of	the	LHeC	detector

• Proton	20	and	50	TeV,		electron	60	GeV	
– As	for	LHeC	50	or	60	GeV	electrons	to	be	measured	in	backward	direction	

• Design	for	LHeC	with	extended	volume	/	layers	will	serve	also	for	FCC-eh	
– Forward/Central:	scales	in	 	for	calo~𝐥𝐨𝐠𝑬𝒉𝒂𝒅

Total	length	13.3	→	20.4m	
Radius	4.9	→	7.2m		

Central	tracker	also	with	(possibly	tilted)	
wheels	

Fwd	tracker	4	→	8	disks	
Bwd	tracker	2	→	6	disks	

HadCal:		
12-15	interaction	lengths	

Most	demanding:	forward	detectorsThe	Low-E	
FCC-eh	detector	
similar	size	to	CMS

― Experiment	Magnets:	Solenoid	+	Dipole	
― Even	longer	track	region	
						to	retain	1o	performance

Ref	[2]



• More	layers	in	Forward	/	Backward	
– 6m	(LHeC)	to	9.2m	in	length,		

rapidity	coverage	5.3	→	5.6	

– #	of	forward	disk:		4	→	7	or	8	

• Planar	(cost)	and	inclined	(performance)		
options	being	considered	

– Inclined	option:	<	10%	of	 	achieved	all	over	

• Area	of	rapid	development:			
the	final	design	would	be	further	optimised

𝑋0

― All	Silicon	
― HV-CMOS	MAPS	(High-Voltage	CMOS	Monolithic	Active	Pixel	Sensors)	
											low	material,	low	power	consumption,	good	resolution	and	tracking	capabilities,	compact	design,	fewer	external	connections	required,	
												good	radiation	hardness,	custom	design	possibility	and	cost-effective	
― Bent	/	stitched	wafers	for	inner	layers	(as	ALICE	and	ePIC)	
― Circular-elliptical	inner	layers

Ref	[2]
11

Central	Tracker	Extension	for	FCC-eh



• LHeC/FCCeh	-	asymmetric	detector:	dense	&	high	energy	particle	production	in	forward	(proton)		
Forward	Instrumentation:	high	granularity,	resolving	dense	jet-structures,	identify	secondary	vertices	&	
supporting	energy	flow	measurement	-	tagging	neutral	particles	

• Calorimeter	tracking	capabilities	(extending/supporting	Tracker	measurements)	
• New	achievements	in	3	beam	machine	steering		
Novel	Concept	of	beam	usage	at	
an	electron	extended	hadron	collider!	[4]						

• e-h	and	h-h	interaction	alternate	in	one	IP		
of	HL-LHC/FCC	-	NO	disturbance	of	other	IP’s		

• Ensure	tolerable	synch-rad	load!		
(masks,	absorbers,		
rad-hard	det.	components)	see	[3],[4]

Design	of	the	Interaction	Region/Detector	-	Main	Aspects	

New	IR	design	for	both	 	and	 	collisions	at	HL-LHC	IP2𝑒h hh

 beam𝑒

 beam 1𝑝

 beam 2𝑝

12
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FCC-(eh)-hh	detector	produces	a	vast	amount	of	data	for	each	
collision	in	 	mode	→	FCC-(eh)-hh	possess	advanced	triggering	
and	data	acquisition	systems	to	quickly	gather,	filter,	and	store	the	
data	like	the	ALICE3	detector	proposed	for	HL-LHC:

hh

Which	foresees	(compared	to	LHeC)	
• a	tracker	with	similar	concept/size	
• additional	TOF,	Čerenkov	&	dedicated	fwd	conversion	tracker	
• Calorimetry	requirements	met	by	LHeC	detector	already	(tbc	by	
simulations)	

All	components	of	the	proposed	eh/hh	detector	re-evaluated		
-	best	performance	for	LHeC-hh	/	FCC-eh-hh,	for	 	and

	physics	programs		
-	would	be	a	novelty	in	HEP	
The	LHeC	beamline	detectors	need	to	be	reconsidered	as	well

𝑝𝑝/𝑝𝐴 /𝐴𝐴
𝑒𝑝/𝑒𝐴

from	https://indico.cern.ch/event/1063724/,		
talk	“ALICE	3	overview”	by	M.	van	Leeuwen	

Adapting LHeC / FCC-eh Detector for hh      LHeC-hh / FCC-eh-hh at same IP

FCC	Conference	London	Ref.	[1],	[5]

• Use	the	more	“powerful”	equipped	LHeC/FCC-eh	forw.	detector	in	the	backw.	region	as	well	
• symmetric	sensitivity	for	hh-	&	eh-interactions	in	one	detector		
• combining	the	physics	programs	of	 	&	 	fields	-	covering	beyond	|𝜂|<5hh 𝑒h

https://indico.cern.ch/event/1063724/


	and	 	Collisions	at	the	FCC-eh	IP			𝑒𝑝/𝑒𝐴 𝑝𝑝/𝑝𝐴 /𝐴𝐴

• The	eh	detector	is	optimised	for	precision	measurement		

• low-pileup	 	collisions	for	precision	SM	physics		
at	the	FCC-eh	IP	may	perform	better	

• with	higher	acceptance	to	lower	 	(moderate	B	field)		
• with	high- 	detectors	chosen	for	precision	rather	than	
radiation	

• …	and	detectors	will	be	better	calibrated	through	DIS	
events

𝑝𝑝

𝑝𝑇
𝜂

14

A	symmetrised	
LHeC	detector



• ERL	based	e-machine	added	to	LHC;						LHeC	detector	collision	kinematic			
–Asymmetric		-			50	GeV(e)		ON		7	TeV	(p)	2.76	TeV/nucl.	(A)	-	
detector	asymmetric	

– Low	dose,	low	pile-up:		can	try	aggressive	options	
• Baseline	LHeC	detector	design	

– Low-material	Si	tracker	covering	very	forward/backward		
esp.	for	heavy	flavour	tagging	

–Hermetic	calorimetry	with	very	good	jet	resolution	and	granularity	
– Equipped	with	muon	system	and	forward	detectors	( neutrals)	

• Extended	version	of	the	LHeC	detector	design	achieves	the	performance	
goals	for	FCC-eh	

• Extrapolation	from	LHeC:			
the	FCC-he	detector	is	feasible,	the	design	will	benefit	from	coming	
technology	progress		
(sensors,	magnets,	low	power	consumption,	cooling,	mechanical	
systems,	electronics		…)	

• It	also	meets	basic	requirements	for	state-of-art	measurement	of	 	
collisions	

• New	3	beam	optics	for	LHeC	&	FCC-eh	allow	measurements	of	 	and	
	collisions	at	same	IP

𝑒,  𝑝,  

hh

𝑒h
hh

• Experimental	demands	are	lighter	for	ep	than	for	pp			
reduced	radiation	level,		no	pileup	concern	and	a	
cleaner	final	state	

• Redundant	DIS	kinematics	allows	cross	calibration	&	
very	high	precision,	such	as	0.1%	electron	energy	
scale	calibration	

• The	ep	configuration	uniquely	selects	the	WW-H	and	
ZZ-H	vertices	for	production	

– ep	→	νH(bb)X:		O(1)%	precision	on	H-bb	
couplings	-	matching	theoretical	uncertainties	

• FCC-eh	reaches	the	H→μμ	decay,	with	O(1000)	events	
– μ	measurement	essential	

• Demanding:	
– ep	→	νHHX		ep	produces	the	Higgs	from	WW	→	
double	Higgs	

• FCC-eh	will	be	a	Higgs	factory	
– desire	to	measure	also	rare	decays,	
– maximum	coverage	for	all	kinds	of	decays

Summary
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DIS	kinematic	plane	and	event	topology

QCD	radiation	between	
scattered	parton		

and	proton	remnant

quark

 
         
𝑄2 = −(𝑘 − 𝑘′ )2

= − 𝑞2

𝑘
𝑘′ 

𝑥

 𝑥 =
𝑄2

𝑝 ⋅ 𝑞
    𝑦 =

𝑝 ⋅ 𝑞
𝑝 ⋅ 𝑘

𝑠𝑥𝑦 = 𝑄2

𝑥

𝑄2

low-x,	low	Q2

high-y

low-y

high-x,	high	Q2

low-y

high-y

parton

𝑒 𝑝

forward backward



Higgs	at	LHeC

• It	is	remarkable	that	VBF	diagrams	were	
calculated	for	lepton	nucleon	collisions	
before	for	pp!	

• Consider	feasibility	for	the	following	LHeC	
point:

19

At	LHC	replace	
lepton	lines	by	quark	lines	
but	dominantly	gg	→	H	
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FCC-eh Physics Benchmarks e.g.

CC DIS WWH à H 

bb	 WW	 gg	 ττ	 cc	 ZZ	 γγ	

BR	 0.577	 0.215	 0.086	 0.0632	 0.0291	 0.0264	 0.00228	

δBRtheory	 3.2%	 4.2%	 10.1%	 5.7%	 12.2%	 4.2%	 5.0%	

N	 1.15	106	 4.3	105	 1.72	105	 1.26	105	 5.8	104	 5.2	104	 4600	

	f		 2.86	BDT	 16	 7.4	 5.9	 5.6	BDT	 8.9	 3.23	

δμ/μ	[%]	 0.27	 2.45	 1.78	 1.65	 2.36	 3.94	 3.23	

0.14	 0.61*	 0.89	 0.83	 1.18	 1.97	 2.37	
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Uta	&	Max	Klein,	Contribution	to	FCC	Workshop,	16.1.2018,	preliminary	

à Sum	of	first	6	branching	fractions		
that	could	be	measured	
						LHeC				:	0.9964	+-	0.02	
						FCChe:	0.9964	+-	0.01	
						pp:						<	0.99	à	cc?	gg?		
	

σ (WW → H→WW )∝κ 4 (HWW )
σ (WW → H→ bb)   ∝κ 2 (HWW )•κ 2 (Hbb)
σ (WW → H→ ττ )   ∝κ 2 (HWW )•κ 2 (Hττ )
σ (WW → H→ gg)   ∝κ 2 (HWW )•κ 2 (Hgg)
σ (WW → H→ cc)    ∝κ 2 (HWW )•κ 2 (Hcc)
σ (WW → H→ ZZ )   ∝κ 2 (HWW )•κ 2 (HZZ )
Note :σ (ZZ→ H→WW )   ∝κ 2 (HZZ )•κ 2 (HWW )

δκ =
1
2
δµ

µ

FCC-he	L=2	ab-1		

Further	coupling	constraints	to	be	explored:	

bb cc bb/cc

both  
vertex tagging  
demanding 
somewhere between 
5-10μm resolution 
required; 
accompanied by  
excellent calorimeter 
measurement



Strong coupling  0.1%; Full unfolding of PDFs; Gluon: low x: saturation?, high x: HL LHC searches… 

LHeC	Physics	Programme

  Ultra high precision (detector, e-h redundancy)       -  new insight 
  Maximum luminosity and much extended range      -  rare, new effects 
  Deep relation to (HL-) LHC (precision+range)         -  complementarity

CDR, arXiv:1211.4831 and 5102 
http://cern.ch/lhec

2121



eA	Collisions
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Processes	&	Challenges	(1):	Neutral	Current	(NC)	𝑒𝑝 → 𝑒𝑋

low- 	/	low- 	events	

• Scattered	electron	 	towards	small	angle	(<	179°)	

• Hadrons	 	go	to	forward	(low- )	OR	backward	(high- )	

• High-y	=	small	energy	 	to	be	distinguished	with	 		

from	photoproduction	events	 	

• 	tagging	for	decomposing	pdf	beyond	 	

high- 	/	high- 	events	

• electrons	almost	everywhere	

• very	high-energy	jets	( )	also	everywhere,		
especially	in	forward

𝑥 𝑄2 
(𝑒)

(𝑋) 𝑦 𝑦
𝑒 𝜋±/𝜋0

𝜸𝒑 → 𝑿
𝑏/𝑐 𝜂 = 3

𝑥 𝑄2 

𝑂(TeV)
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An	NC	(leptoquark)	event	at	LHeC

Forward Backward

𝑒

𝑝 /𝐴

Scattered 𝑒

 jet(s)𝑞/𝑔

■ Hermetic	and	thick	EM	and	Hadron	calorimetry	

• Fine	granularity	for	 	separation	(esp.	backward)	
■ Fine-pitch	tracking	for	vertexing	

• for	heavy-flavour	tagging	(esp.	forward)

𝑒/𝜋

NC

𝑄2 = −(𝑘 − 𝑘′ )2



Processes	&	Challenges	(2):	Charged	Current	(CC)	𝑒𝑝 → 𝜈𝑋

• A	jet	like	high- 	/	high- NC,		

but	w/o	scattered	 	

– Kinematics	should	be	reconstructed	
only	from	the	hadronic	system	angle	and		
missing	 		

• This	also	helps	for:	
– QCD	studies	with	jets	

• including	photoproduction	( )	

– detector	cross-calibration	using	NC	DIS:	

• two	energies	and	angles	( 	and	hadronic	system):	
over-constrained

𝑥 𝑄2 
𝑒

𝑝𝑇

𝑒 → 𝑒′ 𝛾,   𝛾𝑝 → 𝑋

𝑒

24

Forward Backward

𝑒

𝑝 /𝐴

Scattered 𝜈

 jet(s)𝑞/𝑔

CC

■ Hermeticity	(esp.	forward)	

■ good	HadCal	resolution	( 	etc.)	
• tracking	should	help	(particle	flow	algorithm)

𝑒/h



Processes	&	Challenges	(3)	Higgs	/	EW	/	top	/	BSM

• Higgs	
– Thru	WW	fusion	in	CC	or	ZZ	in	NC:			

• need	to	detect	forward	“VBF	jet”	

– Precise	coupling	to	 and	 	:	

• Need	very	good	flavour	tagging		
in	forward	direction	

• Jet	resolution	for	mass	reconstruction	

• EW	and	top	physics	
– similar	mass	range:		

similar	requirement	for	flavour	and	jets	

• BSM	physics	

– high-mass	→	large- 	events	
	

𝑏𝑏,  𝑐𝑐,   𝜏𝜏

𝑥
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FCC-eh

𝜈/𝑒

Quark jets

Higgs

Higgs

Jets

Forward Backward

𝑒

𝑝 /𝐴

■ generic	detector	for	high-Q2	NC/CC	
should	also	serve	for	these	processes	



• High	resolution	tracking	system		
–excellent	primary	vertex	resolution	
–resolution	of	secondary	vertices	down	to	small	angles	in	forward	direction								for	
high	x	heavy	flavor	physics	and	searches	

–precise	pt	measurement	matching	to	calorimeter	signals	(high	granularity),	
calibrated	and	aligned	to	1	mrad	accuracy			

• The	calorimeters	
–electron	energy	to	about	10%/	√	E	calibrated	using	the	kinematic	peak														and	
double	angle	method,	to	permille	level	
	 Tagging	of		γ's	and	backward	scattered	electrons	-		
precise	measurement	of	luminosity	and	photo-production	physics	

–hadronic	part			40%/√	E		calibrated	with	pt_e		/	pt_h	to	1%	accuracy		
–Tagging	of	forward	scattered	proton,	neutron	and	deuteron	-																																				
diffractive	and	deuteron	physics		

• Muon	system,	very	forward	detectors,	luminosity	measurements

	Detector	Requirements	from	Physics
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LHeC	Central	tracker	with	Modern	Silicon

• Technology	advanced	from	CDR	2012	period	

• Low-material	tracker	by	DMAPS		
– CMOS	sensors	(HV-CMOS	for	this	update)	

Readout	electronics	integrated	

• Very	thin:	0.1mm	for	all	sensors	
– Small	material	budget		

for	forward/backward	

• Rad	hard	up	to	 		

(cf.	HL-LHC	fluence		 )	

• 5-8	layers	for		 		

2	hits	for	 	

2 × 1015 1MeV 𝑛𝑒𝑞 /cm2 
≳ 1016

−3.5 < 𝜂 < 4
−4.2 < 𝜂 < 5
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Pitch ()

pixel 25 50

macro pixel 100 400

strip 100 10-50mm

5 Bwd-Tracker wheels

7 Fwd-Tracker Wheels 4 strip layers

4 macro-pixel layers 
1 pixel circ.-elliptical-layer

1 pixel circ.-elliptical-layer

 strip rings

macro-pixel ring 


           pixel rings  



LHeC Trackers
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Warm	Option		
20	x	0.85	cm	Pb	layers	interspaced	by	4	mm	Scint.

GEANT4	simulation	of	response	to	electrons	at	
normal	incidenceEcalBarrel	LAr

[cf	ATLAS:	10%/√E	+	0.35%]

The	ongoing	evaluations	aim	to	determine	if	the	entire	
calorimeter's	resolution	meets	the	specifications	required	for	
specific	physical	events,		such	as	the	decay	of	the	Higgs	boson	into	
two	W	bosons	(H->WW),		bottom	quark	pairs	(bb),	and	the	top	
quark

Ecal	Barrel	LAr	+	HcalBarrel	Tile

LAr	(~25𝑋0)			8.47	 	⊕	0.32%/ 𝐸

Cold	Option		
2.2mm	lead	+	3.8mm	LAr	layers

Comparable	resolution

HcalBarrel	Tile

EMC	-	2012	CDR	Accordion	Geometry	Baseline	Design
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A	Geant4	Simulation	Study	for	the	Warm	Option

Z.	Hashimi	,	F.	Kocak

30Xo30Xo30Xo
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Muon	system

• Baseline:	no	dedicated	magnetic	field		
(solenoid	return	thru	iron	only)	
– Momentum	by	central	tracker	

– Good	tagging	+	fast	trigger	

– 3-stations,	each	with	 	double	layer	

• HL-LHC	technology	serves	for	that	
– Very	thin	RPC	(1mm	gas	gap)	for	higher	rate	capability	and	timing	(<1ns)	

– sMDT:	 cm	drift	tubes	for	precise	position	measurement	

• Possible	extensions	
– Dedicated	forward	toroid	or	outer	solenoid

≥

𝜙 = 1.5
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ATLAS	Phase-I	
RPC-MDT	assembly



Around	zero-degrees

• Backward	 	tagger	+	photon	tagger	

– for	photoproduction	and	luminosity	( )	

• Forward	Proton	spectrometer	following		
the	LHC	design	apart	from	stations	close	to	IP	

• IP	design	( -only	scheme	2020)	
allows	to	place	a	ZDC	
– Transvers	size	 	cm:	shower	leak	moderate	

– Aperture	very	big:	0.35	mrad	or	2.4	GeV	in	 	

• ZDC	Technology	candidate:	Si-W	
– Need	<	1mm	resolution		

for	 	resolution	 	100	MeV	for	7	TeV	neutron	
i.e.	very	fine	segmentation	(e.g.	ALICE	FoCal)	

– Radiation	dose:	O(10MGy)	or	more	
• Much	less	than	LHC,	possibility	to	use	silicon

𝑒
𝑒𝑝 → 𝑒𝑝𝛾

𝑒h

±30
𝑝𝑇

𝑝𝑇 ≪
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dipole

	0-degree	
calorimeter
𝜋0 /𝑛

FPS

FPS

IP	design	2020	and	the	candidate	places	
for	forward	detectors



Consideration	for	full	luminosity	 	runs	with	LHeC	detector𝒑𝒑

• If	we	like	to	run	at	the	full	HL-LHC	luminosity:	
– Thin	and	readout-integrated	Si	sensors	for	high	dose	is	available:	

it	is	just	a	more	expensive	option	

– Calorimeter	can	stand:	may	need	minor	adjustment	(boundary	Fe-Sci.	and	W/Pb-Si)		

– Forward	detectors	(FPS,	ZDC)	should	be	“retractable”:	
they	should	be	in	place	only	for	 	runs	

• The	LHeC	detector	is	optimised	for	precision	measurement		

– It	may	be	more	interesting	to	focus	on	low-pileup	runs	for	SM	physics	in	 		

with	high	acceptance	to	lower	 		

• with	high- 	detectors	chosen	for	precision	rather	than	radiation	

(especially	HadCal,	currently	extended	to	 )	

• using	well-calibrated	detector	through	DIS	events

𝑒𝑝/𝑒𝐴

𝑝𝑝
𝑝𝑇

𝜂
𝜂 < 2.8
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• An	electron	interaction	region	has	been	optimised	to	minimise	the	synchrotron	
radiation	power 

• The	local	impact	of	the	electron	magnets	on	the	proton	beam	orbit	and	optics	can	
be	corrected	in	the	new	FCC-hh	lattice 

• 2	schemes	to	separate	the	proton	beams	have	been	designed	for	the	LHeC	→	they	
can	be	adapted	for	the	FCC-eh	

• Outlook:	implement	both	separation	schemes	into	the	new	hh	lattice	(for	HL-LHC)

• Tracking	simulations	to	investigate	the	impact	of	the	proton	beams	on	each	other	

Summary	Statements	at	FCC	Conference	London	[4]:
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Design	of	the	Interaction	Region	for	Concurrent	e-p	and	p-p	Operation	@	FCC


