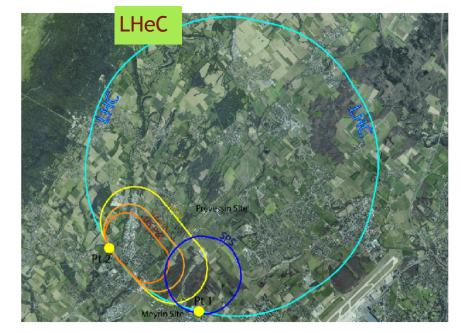


A detector for top-energy DIS

Adnan Kilic (Bursa Uludağ University)

on behalf of the LHeC/FCCeh Study Group


(remote presentation)

Outline of this talk

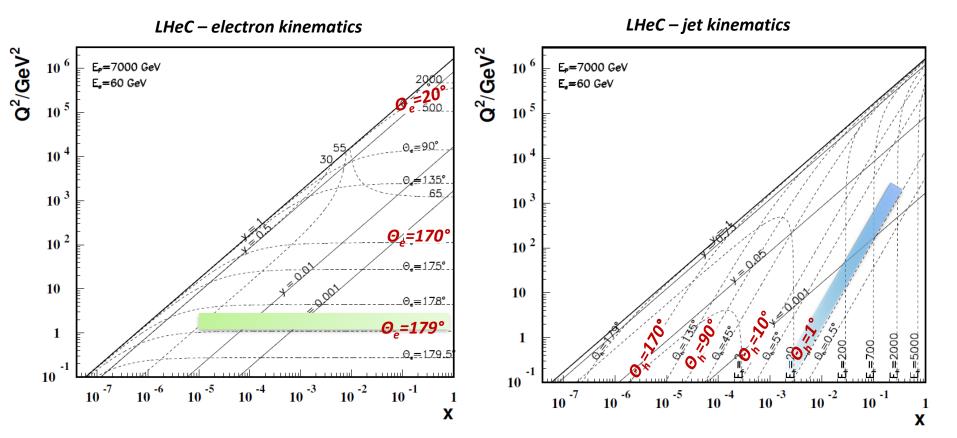
- Introduction: LHeC / FCC-eh parameters and detector studies
- *ep/eA* physics, collision kinematics and detector requirements
 - for DIS and for Higgs / EW / Top / BSM physics
- LHeC baseline detector and extensions for FCC-eh
 - Central tracker and beam pipe
 - Calorimetry
 - Interaction point and magnet
- Design of the interaction region for concurrent ep/eA and pp/pA/AA operation
- Adapting LHeC/FCC-eh detector for *hh*

The LHeC and FCC-eh accelerators

- Electrons from dedicated Energy Recovery Linac (ERL) ٠
- Hadrons from LHC/FCC rings

LHeC baseline:

 $50 \text{ GeV}(e) \times 7 \text{ TeV}(p) = 2.76 \text{ TeV/nucl.}(A)$


- $\sqrt{s} = 1.18 (p)$ or = 0.74 (A) TeV
- $10^{33} 10^{34} \text{ cm}^{-2}\text{s}^{-1}$
- Electrons via 3-track ERL . ~1/4 of LHC circumference

Loss compensation 2 (90m) Loss compensation 1 (140m) Linac 1 (1008m) Iniector Matching/splitter (31m) Matching/combiner (31m) ERL Roadmap see talk J. D'Hondt Arc 1,3,5 (3142m) Arc 2,4,6 (3142m) Bypass (230m) Linac 2 (1008m) Matching/combiner (31m) IP line Detector FCC-eh Matching/splitter (30m) CDR: 8 point FCC: point D [Not to scale] UTURE CIRCULAR COLLIDER (FCC) - 3D Schematic LHC derground Infrastructure CC Tunnels Experimental points Access points Service cavern connection tunnel Electrical alcoves Klystron galleries Tunnel widening FCC-eh ring 9/2022 JO+ 60 GeV(e) × 20–50 TeV (p) 7.9–19.7 TeV/nucl. (A) Ref [1] • $\sqrt{s} = 2.2 - 3.5 (p)$ or = 1.4 - 2.2 (A) TeV • $10^{34} \text{ cm}^{-2} \text{s}^{-1}$

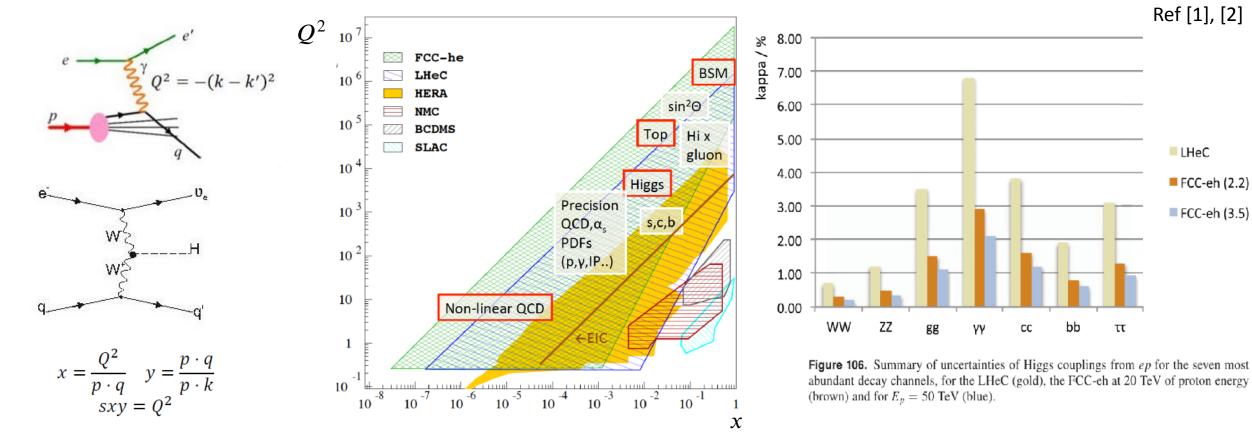
3

Electrons via 3-track ERL

DIS Kinematics

- High x and high Q²: few TeV HFS scattered forward:
- \rightarrow Need forward calorimeter of few TeV energy range down to 1^o
- Mandatory for charged currents where the outgoing electron is missing
- Scattered electron:

Need very bwd. angle acceptance for accessing the low Q² and high y region

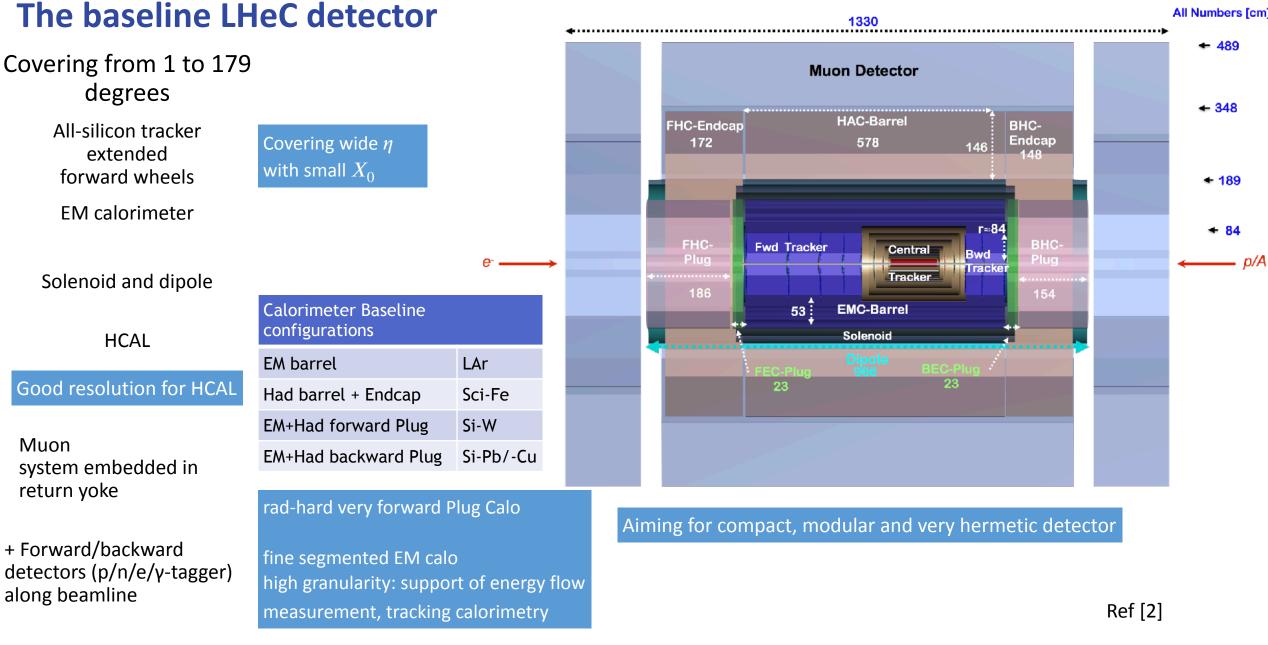

forward backward

Asymmetric energy flow

particles go mostly to incoming proton direction (forward), *e* to backward But they go to everywhere in practice, especially towards small angles

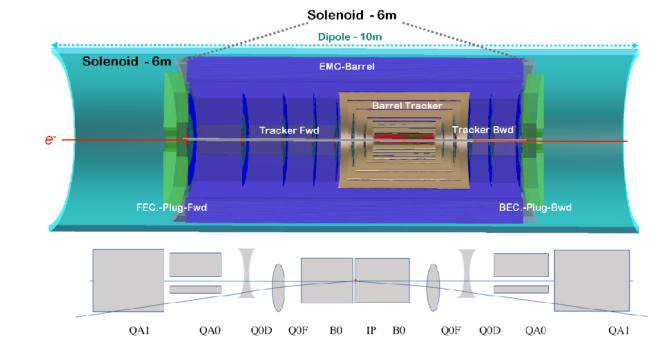
4

DIS kinematic plane and event topology

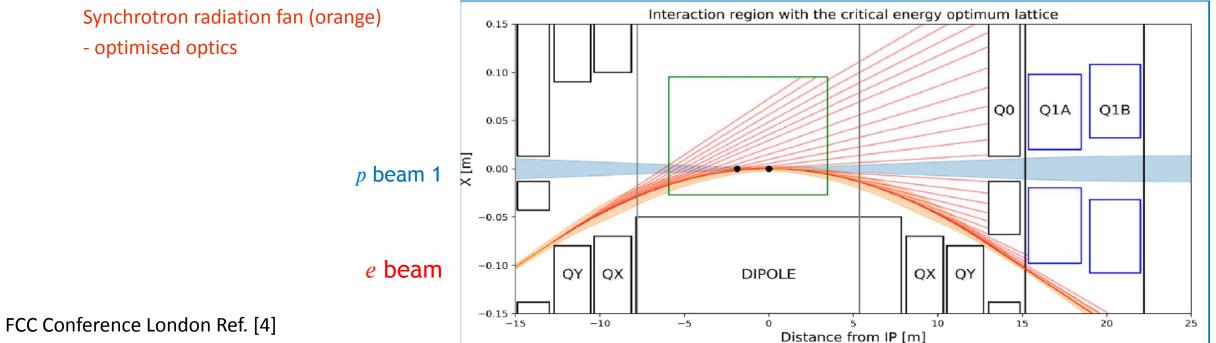

Structure of nucleon and nuclei through DIS

- •Higgs couplings; physics in CC and NC DIS
- •Precision EW and QCD physics (e.g.: α_s , top production, ...)
- BSM physics
- Leptoquarks, heavy neutrinos, ...

see physics talks @ EPS2023: D. Britzger, F. Giuli, M. D'Onofrio

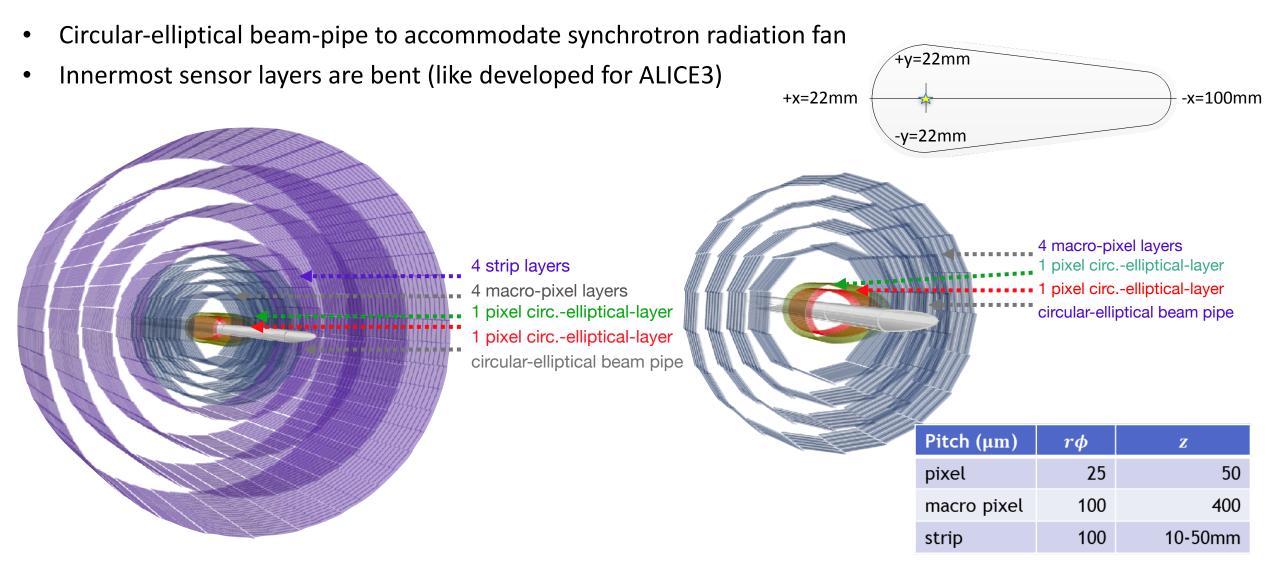

All measured with small event pile-up and well-controlled detector

- redundant kinematics from e and jet: also for calibration



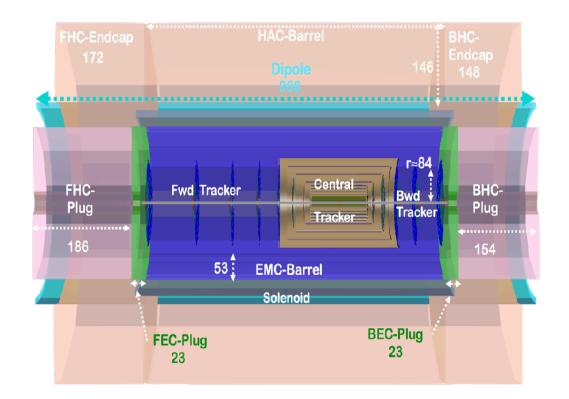
Interaction Point and Magnets

- Dipole magnet integrated in the detector • to bend electron beam
 - Beam-1 *p* and *e* brought in head-on collisions —
 - Beam-2 in a different plane
- Detector needs to be away and shielded from ۲ the synchrotron radiation fan



7

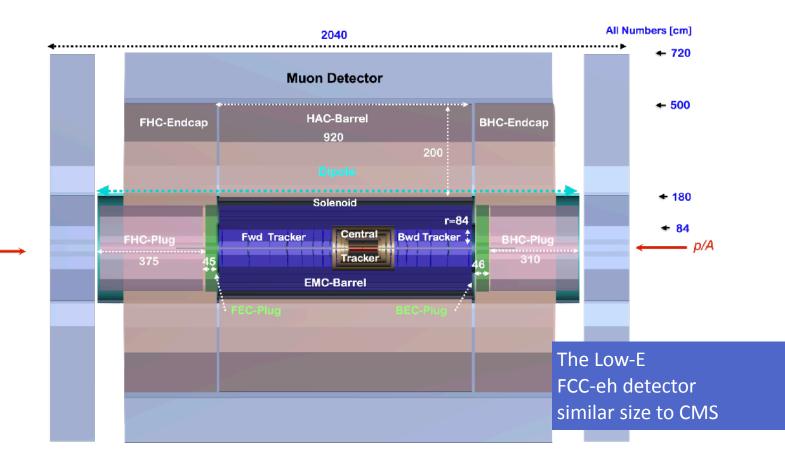
Synchrotron radiation fan (orange) - optimised optics


Barrel sensors and beampipe (version LHeC)

LHeC Calorimetry

- High-performance barrel ($\left| \eta \right| < 2.8)$ "cold" option
 - Baseline: LAr EMC inside solenoid with shared cryostat
 - R&D ongoing to make the barrel layer thinner, also cryostat (goal: a few % of X_0)
 - HadCal uses scintillator for good e/h identification (scintillating plastic tiles and iron plates)
- Fine-segmented plugs with compact shower with Si sensor
 - technology developed for ILC / FCC-ee; energy flow meas.
 support & tracking capability
- "warm" option
 - Sci-Pb \rightarrow modular (installation inside the L3 magnet)
 - Comparable performance: LAr still advantageous for resolution, segmentation, long term & radiation stability

Baseline configuration		coverage	angular coverage	
EM barrel LAr		$-2.3 < \eta < 2.8$	6.6° — 168.9°	
Had barrel + Endcap	Sci-Fe	(~ behind EM barrel)		
EM+Had forward Plug	Si-W	$2.8 < \eta < 5.5$ 0.48° —		
EM+Had backward Plug	Si-Pb/Si-Cu	$-2.3 < \eta < -4.8$	-179.1°	


Complete coverage to +- 5 in (pseudo)rapidity EMC Central Region: 2012: LAr, 2020: Sci/Pb option

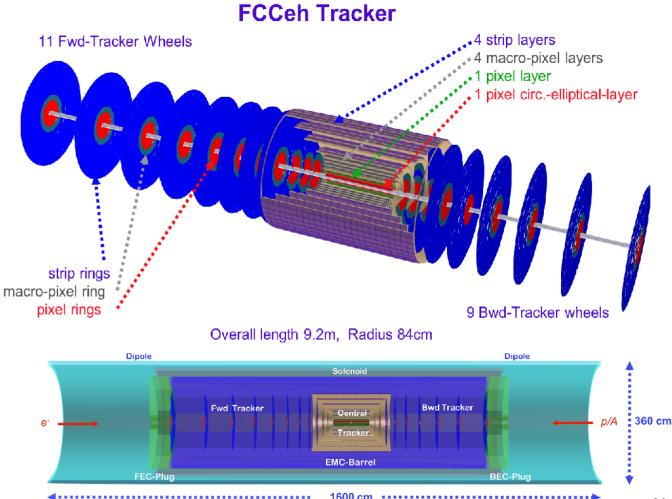
Forward Region: dense, high energy jets of few TeV H = bb_{bar} and other reactions demand resolution of HFS

Backward Region: significant lower energy deposited

Detector design for FCC-eh – extension of the LHeC detector

- Proton 20 and 50 TeV, electron 60 GeV
 - As for LHeC 50 or 60 GeV electrons to be measured in backward direction
- Design for LHeC with extended volume / layers will serve also for FCC-eh
 - Forward/Central: scales in $\sim \log E_{had}$ for calo

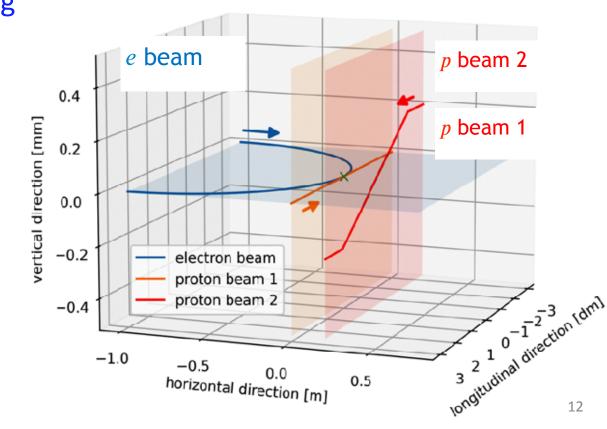
- Experiment Magnets: Solenoid + Dipole
- Even longer track region to retain 1° performance


Total length $13.3 \rightarrow 20.4m$ Radius $4.9 \rightarrow 7.2m$ Central tracker also with (possibly tilted) wheels Fwd tracker $4 \rightarrow 8$ disks Bwd tracker $2 \rightarrow 6$ disks HadCal: 12-15 interaction lengths Most demanding: forward detectors

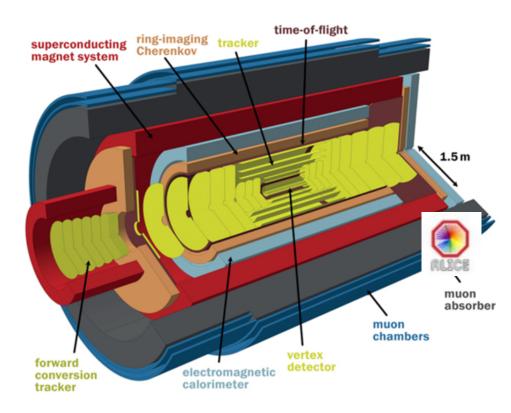
Central Tracker Extension for FCC-eh

- All Silicon
- HV-CMOS MAPS (High-Voltage CMOS Monolithic Active Pixel Sensors)

low material, low power consumption, good resolution and tracking capabilities, compact design, fewer external connections required, good radiation hardness, custom design possibility and cost-effective


- Bent / stitched wafers for inner layers (as ALICE and ePIC)
- Circular-elliptical inner layers
- More layers in Forward / Backward
 - 6m (LHeC) to 9.2m in length, rapidity coverage $5.3 \rightarrow 5.6$
 - # of forward disk: $4 \rightarrow 7$ or 8
- Planar (cost) and inclined (performance) • options being considered
 - Inclined option: < 10% of X_0 achieved all over
- Area of rapid development: the final design would be further optimised

Design of the Interaction Region/Detector - Main Aspects


- LHeC/FCCeh asymmetric detector: dense & high energy particle production in forward (proton) Forward Instrumentation: high granularity, resolving dense jet-structures, identify secondary vertices & supporting energy flow measurement - tagging neutral particles
- Calorimeter tracking capabilities (extending/supporting Tracker measurements)
- New achievements in 3 beam machine steering Novel Concept of beam usage at an electron extended hadron collider! [4]
- e-h and h-h interaction alternate in one IP of HL-LHC/FCC - NO disturbance of other IP's
- Ensure tolerable synch-rad load! (masks, absorbers, rad-hard det. components) see [3],[4]

New IR design for both eh and hh collisions at HL-LHC IP2

Adapting LHeC / FCC-eh Detector for hh -->LHeC-hh / FCC-eh-hh at same IP

from <u>https://indico.cern.ch/event/1063724/</u>, talk "ALICE 3 overview" by M. van Leeuwen

FCC Conference London Ref. [1], [5]

- Use the more "powerful" equipped LHeC/FCC-eh forw. detector in the backw. region as well
 - symmetric sensitivity for hh- & eh-interactions in one detector
 - combining the physics programs of hh & eh fields covering beyond $|\eta| < 5$

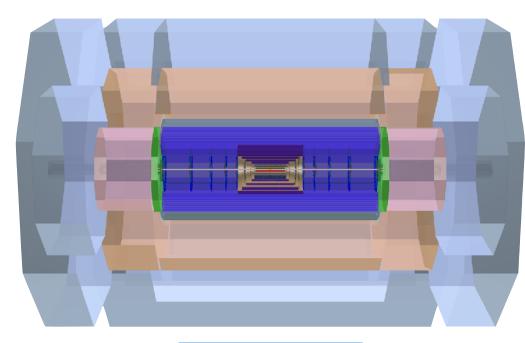
FCC-(eh)-hh detector produces a vast amount of data for each collision in hh mode \rightarrow FCC-(eh)-hh possess advanced triggering and data acquisition systems to quickly gather, filter, and store the data like the ALICE3 detector proposed for HL-LHC:

Which foresees (compared to LHeC)

- a tracker with similar concept/size
- additional TOF, Čerenkov & dedicated fwd conversion tracker
- Calorimetry requirements met by LHeC detector already (tbc by simulations)

All components of the proposed eh/hh detector re-evaluated

- best performance for LHeC-hh / FCC-eh-hh, for pp/pA/AA and an/aA physics programs


ep/eA physics programs

- would be a novelty in HEP

The LHeC beamline detectors need to be reconsidered as well

ep/eA and pp/pA/AA Collisions at the FCC-eh IP

- The eh detector is optimised for precision measurement
- low-pileup *pp* collisions for precision SM physics at the FCC-eh IP may perform better
 - with higher acceptance to lower p_T (moderate B field)
 - with high- η detectors chosen for precision rather than radiation
 - ... and detectors will be better calibrated through DIS events

A symmetrised LHeC detector

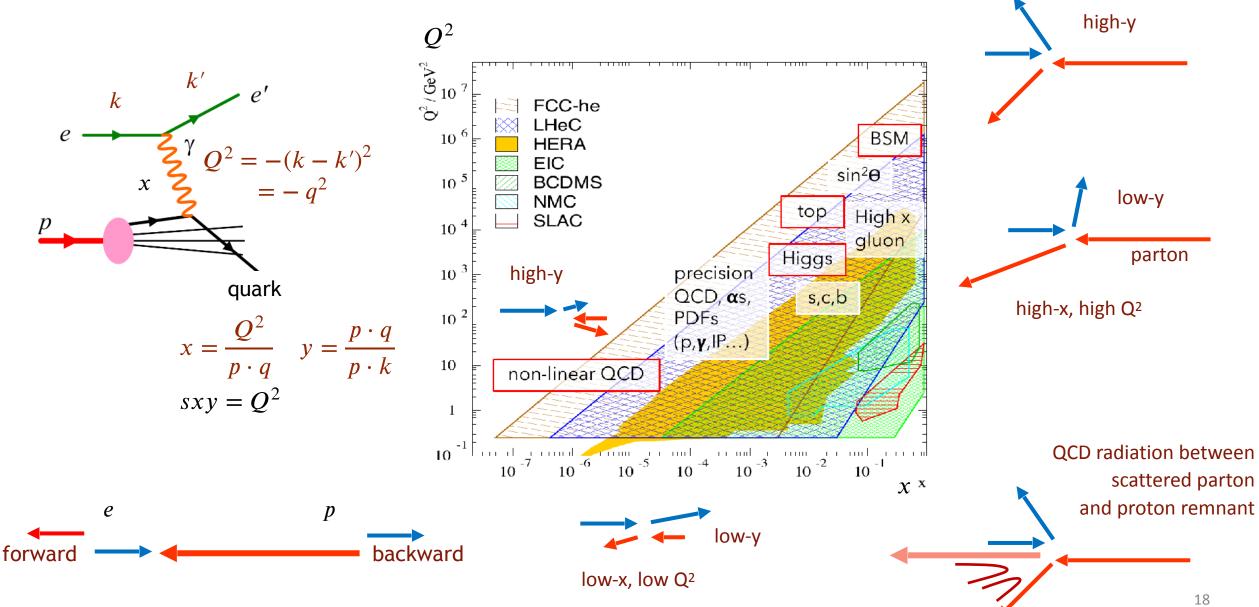
Summary

- ERL based e-machine added to LHC; LHeC detector collision kinematic
 - Asymmetric 50 GeV(e) ON 7 TeV (p) 2.76 TeV/nucl. (A) detector asymmetric
 - Low dose, low pile-up: can try aggressive options
- Baseline LHeC detector design
 - Low-material Si tracker covering very forward/backward esp. for heavy flavour tagging
 - Hermetic calorimetry with very good jet resolution and granularity
 - Equipped with muon system and forward detectors (e, p, neutrals)
- Extended version of the LHeC detector design achieves the performance goals for FCC-eh
- Extrapolation from LHeC:
 - the FCC-he detector is feasible, the design will benefit from coming technology progress
 - (sensors, magnets, low power consumption, cooling, mechanical systems, electronics ...)
- It also meets basic requirements for state-of-art measurement of hh collisions
- New 3 beam optics for LHeC & FCC-eh allow measurements of eh and hh collisions at same IP

- Experimental demands are lighter for ep than for pp reduced radiation level, no pileup concern and a cleaner final state
- Redundant DIS kinematics allows cross calibration & very high precision, such as 0.1% electron energy scale calibration
- The ep configuration uniquely selects the WW-H and ZZ-H vertices for production
 - $-ep \rightarrow vH(bb)X: O(1)\%$ precision on H-bb couplings - matching theoretical uncertainties
- FCC-eh reaches the H \rightarrow µµ decay, with O(1000) events
 - $-\mu$ measurement essential
- Demanding:
 - − ep \rightarrow vHHX ep produces the Higgs from WW \rightarrow double Higgs
- FCC-eh will be a Higgs factory
 - desire to measure also rare decays,
 - maximum coverage for all kinds of decays

Sources

[1] P. Kostka, A. Polini, Y. Yamazaki,


'Physics and design of the eh detector', The FCC Conference 2023 in London, 8 June 2023

[2] Detector designs for future highest-energy colliders

- very detailed studies in LHeC CDR 2012 LHeC Study Group,
- 2012 J. Phys. G: Nucl. Part. Phys. 39 075001
- for FCC-eh detector in FCC CDR vol. 3 EPJ Special Topics 228, 755–1107(2019)
- LHeC Collaboration and FCC-eh Study Group: P. Agostini et al., J. Phys. G 48 (2021) 11, 110501, e-Print: 2007.14491 [hep-ex]
- OFFSHELL-2021 The virtual HEP conference on Run4@LHC, EPJC Eur.Phys.J.C 82 (2022) 1, 40
- [3] T .von Witzleben, K. D. J. André, R. De Maria, B. Holzer, M. Klein, J. Pretz, M. Smith, 'Beam Dynamics for Concurrent Operation LHeC and the HL-LHC', IPAC 2023
- [4] T. von Witzleben, K.D.J. André, M. Giovannozzi, B. Holzer, M. Klein, G. P. Segurana, J. Pretz, 'Design of the Interaction Region for Concurrent e-p and p-p Operation', The FCC Conference 2023 in London, 8 June 2023
- [5] P. Newman for the LHeC / FCC-eh study group, 'An Interaction Region and Detector for High Energy DIS at CERN', DIS 2023 Michigan State University 28 March 2023

Backup

DIS kinematic plane and event topology

Higgs at LHeC

At LHC replace lepton lines by quark lines but dominantly $gg \rightarrow H$

 W^{\pm}

q

 e^{\pm}

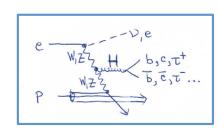
 $\nu_e \ (e^{\pm})$

H

q'(q)

- It is remarkable that VBF diagrams were calculated for lepton nucleon collisions before for pp!
- Consider feasibility for the following LHeC point:

 $E_p = 7 \, TeV, \quad E_e = 60 \, GeV, \quad m_H = 125 \, GeV$


FCC-eh Physics Benchmarks e.g.

Uta & Max Klein, Contribution to FCC Workshop, 16.1.2018, preliminary

CC DIS WWH \rightarrow H

FCC-he L=2 ab⁻¹

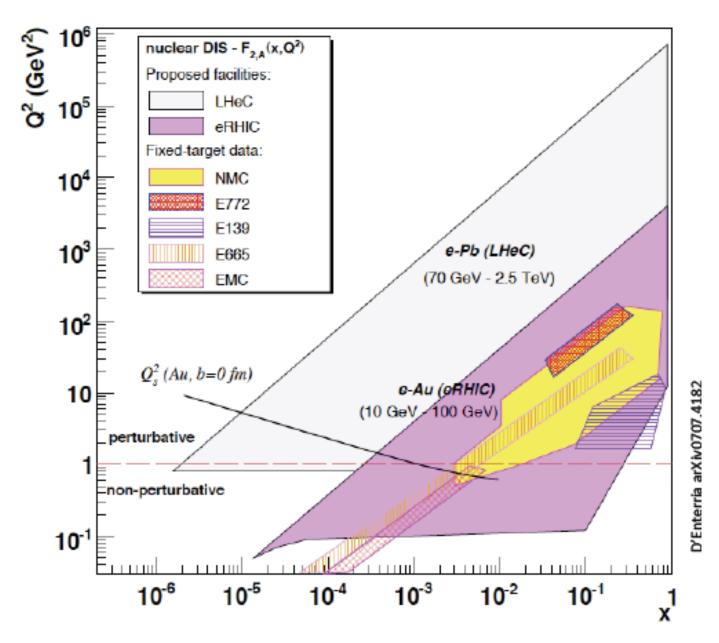
	bb	ww	gg	ττ	сс	ZZ	γγ
BR	0.577	0.215	0.086	0.0632	0.0291	0.0264	0.00228
$\delta \text{BR}_{\text{theory}}$	3.2%	4.2%	10.1%	5.7%	12.2%	4.2%	5.0%
Ν	1.15 10 ⁶	4.3 10 ⁵	1.72 10 ⁵	1.26 10 ⁵	5.8 10 ⁴	5.2 10 ⁴	4600
f	2.86 _{BDT}	16	7.4	5.9	5.6 _{BDT}	8.9	3.23
δμ/μ [%]	0.27	2.45	1.78	1.65	2.36	3.94	3.23
$\delta \kappa = \frac{1}{2} \frac{\delta \mu}{\mu}$	0.14	0.61*	0.89	0.83	1.18	1.97	2.37

 \rightarrow Sum of first 6 branching fractions that could be measured

LHeC : 0.9964 + 0.02FCChe: 0.9964 + 0.01pp: $< 0.99 \rightarrow cc? gg?$ Further coupling constraints to be explored: $\sigma(WW \to H \to WW) \propto \kappa^{4}(HWW)$ $\sigma(WW \to H \to bb) \propto \kappa^{2}(HWW) \cdot \kappa^{2}(Hbb)$ $\sigma(WW \to H \to \tau\tau) \propto \kappa^{2}(HWW) \cdot \kappa^{2}(H\tau\tau)$ $\sigma(WW \to H \to gg) \propto \kappa^{2}(HWW) \cdot \kappa^{2}(Hgg)$ $\sigma(WW \to H \to cc) \propto \kappa^{2}(HWW) \cdot \kappa^{2}(Hcc)$ $\sigma(WW \to H \to ZZ) \propto \kappa^{2}(HWW) \cdot \kappa^{2}(HZZ)$ Note: $\sigma(ZZ \to H \to WW) \propto \kappa^{2}(HZZ) \cdot \kappa^{2}(HWW)_{18}$ bb/cc

both vertex tagging demanding somewhere between 5-10µm resolution required; accompanied by excellent calorimeter measurement

LHeC Physics Programme

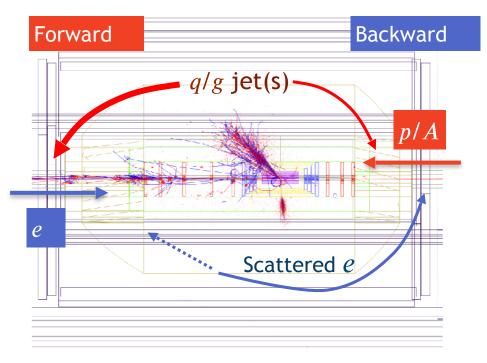

CDR, arXiv:1211.4831 and 5102 http://cern.ch/lhec

QCD Discoveries	$\alpha_s < 0.12, q_{sea} \neq \overline{q}$, instanton, odderon, low x: (n0) saturation, $\overline{u} \neq \overline{d}$
Higgs	WW and ZZ production, $H \to b\overline{b}$, $H \to 4l$, CP eigenstate
Substructure	electromagnetic quark radius, e^* , ν^* , W ?, Z ?, top?, H ?
New and BSM Physics	leptoquarks, RPV SUSY, Higgs CP, contact interactions, GUT through α_s
Top Quark	top PDF, $xt = x\overline{t}$?, single top in DIS, anomalous top
Relations to LHC	SUSY, high x partons and high mass SUSY, Higgs, LQs, QCD, precision PDFs
Gluon Distribution	saturation, $x \approx 1, J/\psi, \Upsilon$, Pomeron, local spots?, F_L, F_2^c
Precision DIS	$\delta \alpha_s \simeq 0.1 \%, \delta M_c \simeq 3 \text{MeV}, v_{u,d}, a_{u,d} \text{ to } 2 - 3 \%, \sin^2 \Theta(\mu), F_L, F_2^b$
Parton Structure	Proton, Deuteron, Neutron, Ions, Photon
Quark Distributions	valence $10^{-4} \leq x \leq 1$, light sea, d/u , $s = \overline{s}$?, charm, beauty, top
QCD	N ³ LO, factorisation, resummation, emission, AdS/CFT, BFKL evolution
Deuteron	singlet evolution, light sea, hidden colour, neutron, diffraction-shadowing
Heavy Ions	initial QGP, nPDFs, hadronization inside media, black limit, saturation
Modified Partons	PDFs "independent" of fits, unintegrated, generalised, photonic, diffractive
HERA continuation	$F_L, xF_3, F_2^{\gamma Z}$, high x partons, α_s , nuclear structure,

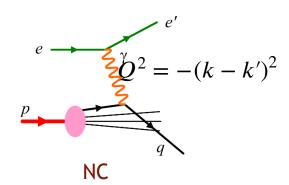
Ultra high precision (detector, e-h redundancy)	- new insight
Maximum luminosity and much extended range	- rare, new effects
Deep relation to (HL-) LHC (precision+range)	- complementarity

Strong coupling 0.1%; Full unfolding of PDFs; Gluon: low x: saturation?, high x: HL LHC searches...

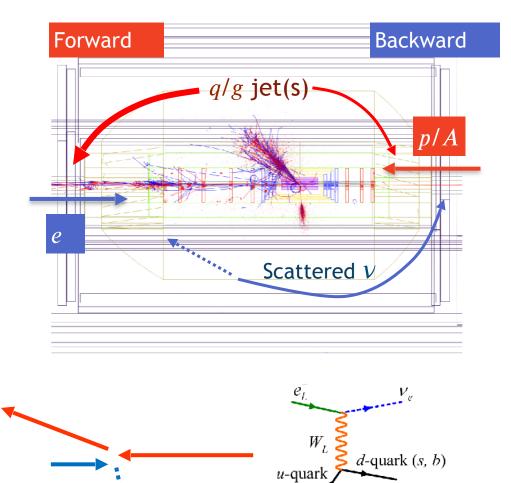
eA Collisions



Processes & Challenges (1): Neutral Current (NC) $ep \rightarrow eX$

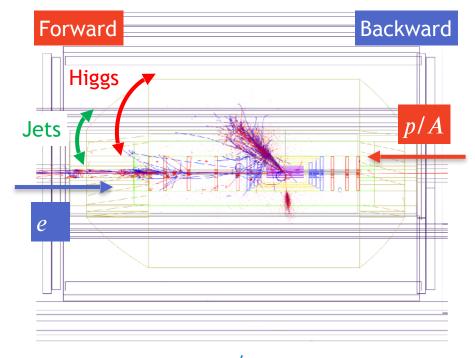

low-x / low- Q^2 events

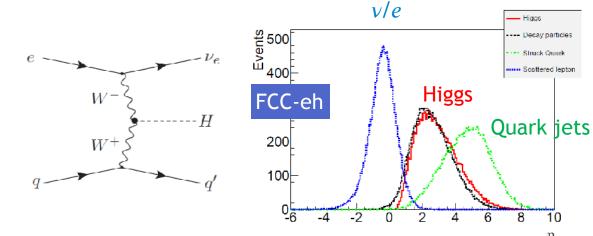
- Scattered electron (e) towards small angle (< 179°)
- Hadrons (X) go to forward (low-y) OR backward (high-y)
- High-y = small energy e to be distinguished with π^{\pm}/π^{0} from photoproduction events $\gamma p \rightarrow X$
- b/c tagging for decomposing pdf beyond $n \neq 3$ high-x / high- Q^2 events
- electrons almost everywhere
- very high-energy jets (O(TeV)) also everywhere,
- Hermetic and thick EM and Hadron calorimetry
 - Fine granularity for e/π separation (esp. backward)
- Fine-pitch tracking for vertexing
 - for heavy-flavour tagging (esp. forward)



An NC (leptoquark) event at LHeC

Processes & Challenges (2): Charged Current (CC) $ep \rightarrow vX$


- A jet like high-x / high- Q^2 NC, but w/o scattered e
 - Kinematics should be reconstructed only from the hadronic system angle and missing p_T
- This also helps for:
 - QCD studies with jets
 - including photoproduction ($e \rightarrow e' \gamma, \ \gamma p \rightarrow X$)
 - detector cross-calibration using NC DIS:
 - two energies and angles (*e* and hadronic system):
- Hermeticity (esp. forward)
- good HadCal resolution (*e*/*h* etc.)
 - tracking should help (particle flow algorithm)



CC

Processes & Challenges (3) Higgs / EW / top / BSM

- Higgs
 - Thru WW fusion in CC or ZZ in NC:
 - need to detect forward "VBF jet"
 - Precise coupling to $b\overline{b}$, $c\overline{c}$, and $\tau\tau$:
 - Need very good flavour tagging in <u>forward</u> direction
 - Jet resolution for mass reconstruction
- EW and top physics
 - similar mass range:
 similar requirement for flavour and jets
- BSM physics
 - high-mass \rightarrow large-x events
- generic detector for high-Q² NC/CC should also serve for these processes

25

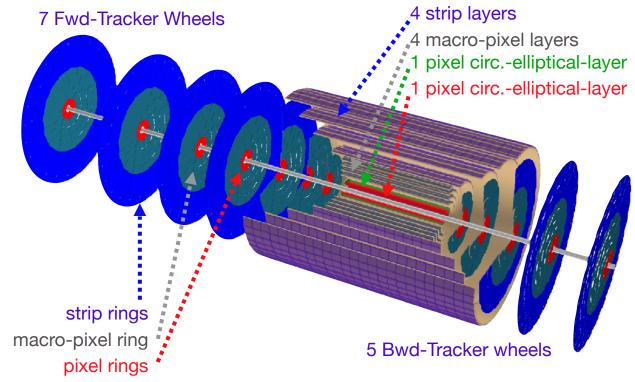
Detector Requirements from Physics

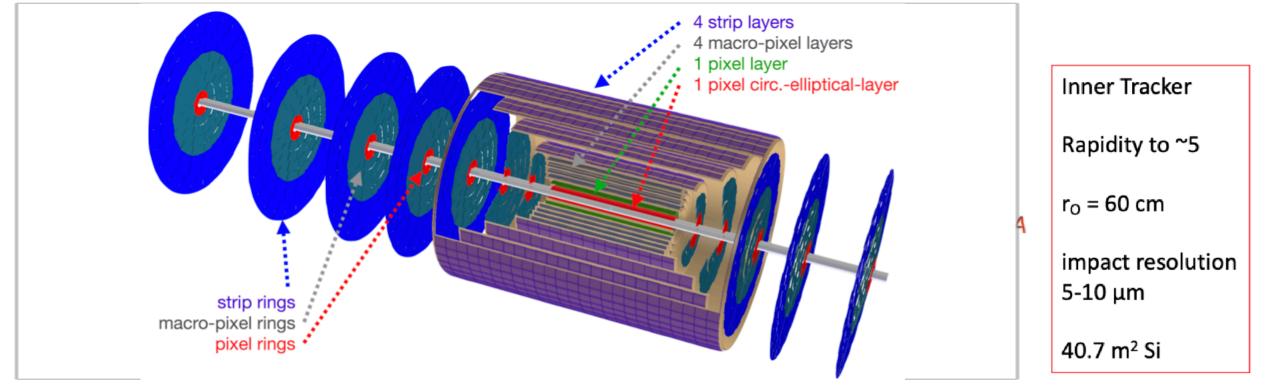
- High resolution tracking system
 - -excellent primary vertex resolution
 - resolution of secondary vertices down to small angles in forward direction for high x heavy flavor physics and searches
 - precise p_t measurement matching to calorimeter signals (high granularity),
 calibrated and aligned to 1 mrad accuracy
- The calorimeters

-electron energy to about $10\%/\sqrt{E}$ calibrated using the kinematic peak and double angle method, to permille level

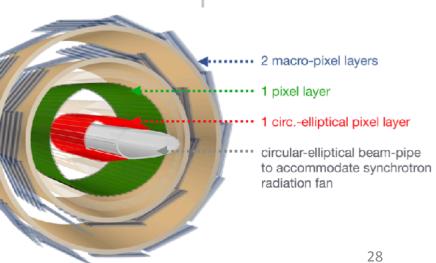
Tagging of γ 's and backward scattered electrons -

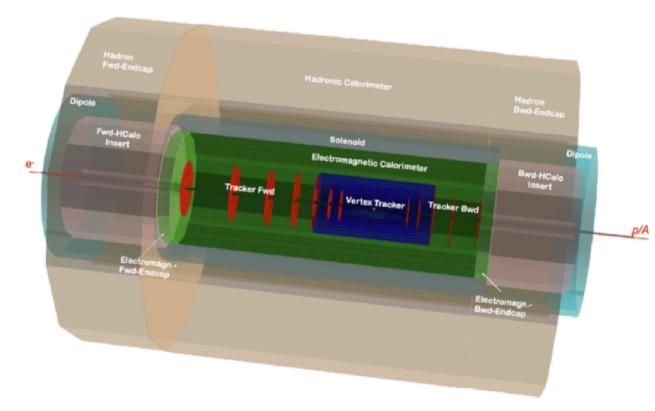
precise measurement of luminosity and photo-production physics


–hadronic part $40\%/\sqrt{E}$ calibrated with p_{t_e} / p_{t_h} to 1% accuracy


- Tagging of forward scattered proton, neutron and deuteron diffractive and deuteron physics
- Muon system, very forward detectors, luminosity measurements

LHeC Central tracker with Modern Silicon


- Technology advanced from CDR 2012 period
- Low-material tracker by DMAPS
 - CMOS sensors (HV-CMOS for this update)
 Readout electronics integrated
- Very thin: 0.1mm for all sensors
 - Small material budget
 for forward/backward
- Rad hard up to 2×10^{15} 1MeV n_{eq}/cm^2 (cf. HL-LHC fluence $\gtrsim 10^{16}$)
- 5-8 layers for $-3.5 < \eta < 4$ 2 hits for $-4.2 < \eta < 5$


Pitch ()		
pixel	25	50
macro pixel	100	400
strip	100	10-50mm

eC Trackers		LHeC Tracker Part	$\eta_{ m max}$	η_{\min}	#Layers _{Barrel}
		pix	3.3	-3.3	2
		Inner Barrel pix_{macro}	2.	-2.	4
<i>m</i> .		strip	1.3	-1.3	4
max, η_{min}					$ \# Rings_{Wheels}$
		pix	4.1/-1.1	1.1/-4.1	2
lodules/Sensors		End Caps pix _{macro}	2.3/-1.4	1.4/-2.3	1
otal Si area	$[m^2]$	strip	2./-0.7	0.7/-2.	1-4
ead-out-Channel	s [10 ⁶]	pix	5.2	2.6	2
		$\mathbf{Fwd} \ \mathbf{Tracker} \ \mathbf{pix}_{\mathbf{macro}}$	3.4	2.2	1
$\operatorname{tch}^{r-\phi}$	$[\mu m]$	strip	3.1	1.4	4
tch^{z}	$[\mu m]$	pix	-2.6	-4.6	2
		Bwd Tracker pix_{macro}	-2.2	-2.9	1
$\operatorname{Verage} X_0 / \Lambda_I$	[%]	strip	-1.4	-2.5	4
ncl. beam pip	e [%]	Total $\eta_{ m max/min}$	5.2	-4.6	

Barrel Calorimeters

Calo (LHeC)	EMC	HCAL			
	Barrel	Ecap Fwd	Barrel	Ecap Bwd	
Readout, Absorber	Sci,Pb	Sci,Fe	Sci,Fe	Sci,Fe	
Layers	38	58	45	50	
Integral Absorber Thickness [cm]	16.7	134.0	119.0	115.5	
η_{\max}, η_{\min}	2.4, -1.9	1.9, 1.0	1.6, -1.1	-1.5, -0.6	
$\sigma_E/E = a/\sqrt{E} \oplus b \qquad [\%]$	12.4/1.9	46.5/3.8	48.23/5.6	51.7/4.3	
Λ_I / X_0	$X_0 = 30.2$	$\Lambda_I = 8.2$	$\Lambda_I = 8.3$	$\Lambda_I = 7.1$	
Total area Sci [m ²]	1174	1403	3853	1209	

LHeC Calorimeters

Complete coverage to +- 5 in (pseudo)rapidity

Central Region: 2012: LAr, 2020 Sci/Fe option.

Forward Region: dense, high energy jets of few TeV

 $H \rightarrow bb$ and other reactions demand resolution of HFS

Backward Region: in DIS only deposits of $E < E_e$

Forward/Backward Calorimeters

Calo (LHeC)	FHC Plug Fwd	FEC Plug Fwd	BEC Plug Bwd	BHC Plug Bwd
Readout, Absorber	Si,W	Si,W	$\mathbf{Si,Pb}$	$_{\rm Si,Cu}$
Layers	300	49	49	165
Integral Absorber Thickness [cm]	156.0	17.0	17.1	137.5
η_{\max}, η_{\min}	5.5, 1.9	5.1, 2.0	-1.4, -4.5	-1.4, -5.0
$\sigma_E / E = a / \sqrt{E} \oplus b \qquad [\%]$	51.8/5.4	17.8/1.4	14.4/2.8	49.5/7.9
Λ_I / X_0	$\Lambda_I = 9.6$	$X_0 = 48.8$	$X_0 = 30.9$	$\Lambda_I = 9.2$
Total area Si [m ²]	1354	187	187	745

arXiv:2007.14491 29

EMC - 2012 CDR Accordion Geometry Baseline Design

normal incidence

outer copper layer

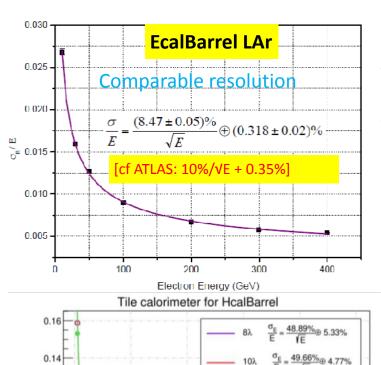
outer copper layer stainless stee glue

kapton

lead

Cold Option

0.12


0.08

0.06

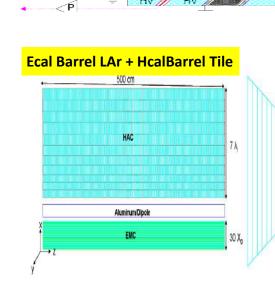
0.04

°€/Ē

2.2mm lead + 3.8mm LAr layers LAr (~25 X_0) 8.47 / $\sqrt{E} \oplus 0.32\%$

HcalBarrel Tile

 $\frac{\sigma_{\rm E}}{F} = \frac{49.32\%}{\sqrt{F}} \oplus 4.74\%$

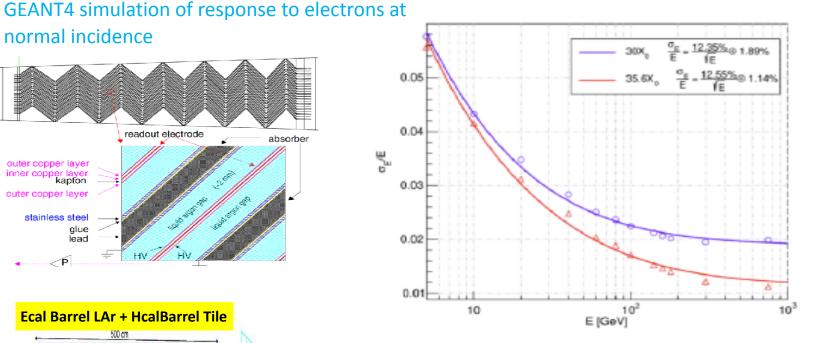

800

1000

12λ

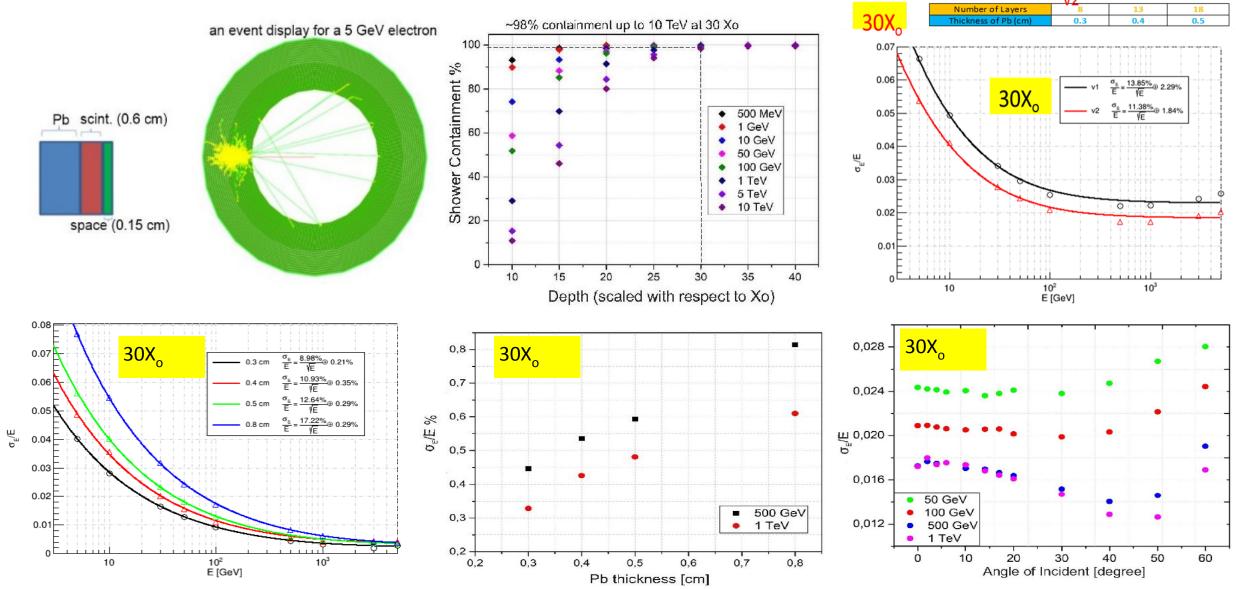
600

E [GeV]



readout electrode

absorbe


Warm Option

20 x 0.85 cm Pb layers interspaced by 4 mm Scint. Sci-Pb (30 X_0) 12.55/ $\sqrt{E} \oplus$ 1.89%

The ongoing evaluations aim to determine if the entire calorimeter's resolution meets the specifications required for specific physical events, such as the decay of the Higgs boson into two W bosons (H->WW), bottom guark pairs (bb), and the top quark

A Geant4 Simulation Study for the Warm Option

Z. Hashimi , F. Kocak

ν1

3

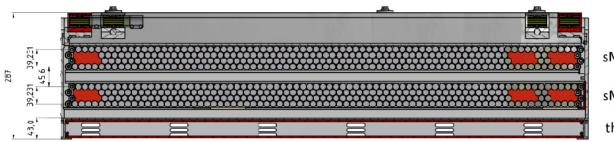
6

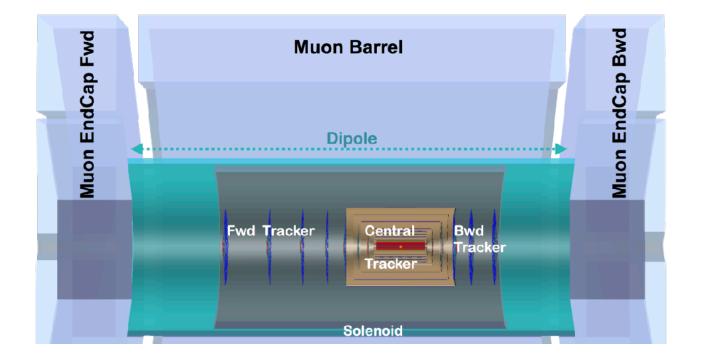
0.5

0.6

11

0.8

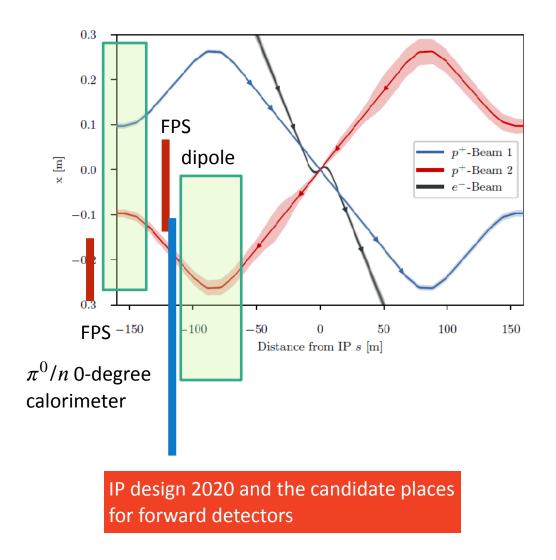

Number of Lavers


Thickness of Pb (cm

30X_o

Muon system

- Baseline: no dedicated magnetic field (solenoid return thru iron only)
 - Momentum by central tracker
 - Good tagging + fast trigger
 - 3-stations, each with \geq double layer
- HL-LHC technology serves for that
 - Very thin RPC (1mm gas gap) for higher rate capability and timing (<1ns)
 - sMDT: $\phi = 1.5$ cm drift tubes for precise position measurement
- Possible extensions
 - Dedicated forward toroid or outer solenoid



Around zero-degrees

- Backward *e* tagger + photon tagger
 - for photoproduction and luminosity ($ep
 ightarrow ep\gamma$)
- Forward Proton spectrometer following the LHC design apart from stations close to IP
- IP design (*eh*-only scheme 2020) allows to place a ZDC
 - Transvers size ± 30 cm: shower leak moderate
 - Aperture very big: 0.35 mrad or 2.4 GeV in p_T
- ZDC Technology candidate: Si-W
 - Need < 1mm resolution</p>
 - for p_T resolution \ll 100 MeV for 7 TeV neutron i.e. very fine segmentation (e.g. ALICE FoCal)
 - Radiation dose: O(10MGy) or more
 - Much less than LHC, possibility to use silicon

Consideration for full luminosity *pp* **runs with LHeC detector**

- If we like to run at the full HL-LHC luminosity:
 - Thin and readout-integrated Si sensors for high dose is available: it is just a more expensive option
 - Calorimeter can stand: may need minor adjustment (boundary Fe-Sci. and W/Pb-Si)
 - Forward detectors (FPS, ZDC) should be "retractable": they should be in place only for ep/eA runs
- The LHeC detector is optimised for precision measurement
 - It may be more interesting to focus on low-pileup runs for SM physics in pp with high acceptance to lower p_T
 - with high- η detectors chosen for precision rather than radiation (especially HadCal, currently extended to $|\eta| < 2.8$)
 - using well-calibrated detector through DIS events

Design of the Interaction Region for Concurrent e-p and p-p Operation @ FCC

Summary Statements at FCC Conference London [4]:

- An electron interaction region has been optimised to minimise the synchrotron radiation power
- The local impact of the electron magnets on the proton beam orbit and optics can be corrected in the new FCC-hh lattice
- 2 schemes to separate the proton beams have been designed for the LHeC → they can be adapted for the FCC-eh
- Outlook: implement both separation schemes into the new hh lattice (for HL-LHC)
- Tracking simulations to investigate the impact of the proton beams on each other