Detector Challenges of the strong-field QED experiment LUXE at the European XFEL

Oleksandr Borysov on behalf of LUXE collaboration

European Physical Society Conference on High Energy Physics 21-25 August 2023

Outline

- New experiment proposed at DESY and Eu.XFEL
- Study QED in Strong Field regime

More on LUXE physics: Talk: Evan Ranken Talk: Nicolo Trevisani * LUXE TDR: arXiv:2308.00515
* LUXE website: <u>https://luxe.desy.de</u>

- LUXE physics observables
- Design of experimental setup at European XFEL
- Summary

LUXE: Physics processes

Non-linear Compton Scattering:

Observables:

- Shift of first kinematic edge because of increase of electron effective mass: m^{*}=m√1+ξ;
- Position of other kinematic edges;
- Intensity of nγ scattering.

16.5 GeV electron, 800 nm laser, 17.2° crossing angle

Pair production:

non-linear Breit-Wheeler and trident

Generating incident photon:

- Compton photons inside the same laser pulse => largest rate
- Bremsstrahlung photons produced upstream => highest E
- Inverse Compton scattering upstream (E=9 GeV)

Electron Beam at European XFEL

LUXE experiment will study Strong Field QED in collisions of high power laser with:

- XFEL electron beam;
- High energy photon beam produced by XFEL electrons in bremsstrahlung or ICS.

Eu XFEL:

- Linear electron accelerator
- Operates since 2017
- Used to generate X-ray photons
- Energy 16.5 GeV (possible 10 GeV, 14 GeV, 17.5 GeV);
- Repetition rate 10 Hz;
- LUXE uses one out of 2700 bunches per train;
- Focusing down to $\sigma_{x,y}$: 5 20 μ m;
- Typically 1.5×10⁹ e- per bunch.

LUXE setup

LUXE setup conceptually contains two detector subsystems:

• Electron positron spectrometer

Photon detection system

- Detector performance in LUXE setup was studied in GEANT4 and FLUKA simulations.
- Collision processes were simulated using strong field QED MC code PTARMIGAN*.

LUXE setup

There are 3 beam dumps in the experimental area (two are highlighted) located few meters away from the detectors:

- They are sources of substantial background composed of e-, e+, photons and neutrons;
- Additional radiation load on the detectors and electronics:

Studies to optimize shielding and beam dumps design:

- Reduce the flux of particles in backward direction;
- Shielding to protect detectors from scattered particles;
- Consider timing to cut the background;
- Detailed study of neutron fluxes both in Geant4 and FLUKA simulations.

Positron Detection

Study e+e- pair production

Expected event rates per laser shot

- electron-laser mode: 10⁻²-10⁴ e⁺e⁻ pairs
- gamma-laser mode: 10⁻²-10 e⁺e⁻ pairs

Spectrometer:

- Magnet: 1 T 1.5 T of ~1.3 m;
- 4 layers of silicon pixel detectors;
- Compact electromagnetic calorimeter.

Tracker

- ALPIDE silicon pixel sensors: 15 x 30 mm²;
- Sensors developed for ALICE Inner Tracking System (currently in operation);
- Pixel size: 27 x 29 μm², spatial resolution ~5 μm;
- Good performance under irradiation able to tolerate an ionization dose of up to 2.7 Mrad.

Performance in MC simulation

- Four layers of two staves;
- Track reconstruction efficiency is above 95%;
- Energy resolution < 1%, independent of energy.

Developing reconstruction algorithms for high multiplicity events based on ML and Quantum Computers: Talk: Yee Chinn Yap

Poster: Annabel Kropf

Reconstruction efficiency for events with 10k positrons

Electromagnetic Calorimeter

- Ultra compact design developed by FCAL collaboration;
- Sampling calorimeter: 21 layers of 3.5 mm thick tungsten absorber plates (21 X0)
- Silicon sensors (5.5 x 5.5 mm² pads, 320 µm thick), installed in 1 mm gap between absorbers;
- Small Molière radius, high spatial resolution of local energy deposits
- Readout via dedicated FLAME ASIC (developed in FCAL).

Performance in MC simulation

- Energy resolution ~20%;
- Single particle position resolution ~0.8 mm at 10GeV;
- Complementary measurement of positron energy spectra;
- Low energy distributed background rejection.

Special algorithm for high multiplicity events

capable of reconstructing spectra and number of particles based on distribution of deposited energy

Electron Detectors Setup

- Electrons after Compton scattering have continuous spectrum ranging from 16.5 GeV down to lowest energies within acceptance of the magnet;
- Beam pipe cannot be used;
- After exiting from the vacuum chamber electrons propagate in the air;
- Generate extra background.

Simulated 100k electrons of 16.5 GeV. Background particles hitting detectors and shielding

Electron Detection

- Expected event rate: up to 10⁹ electrons;
- Chosen technologies:
 - Scintillator screen and Camera System;
 - Cherenkov gas detector.

More in EPS talk: Antonios Athanassiadis

Scintillator Screen

- High resolution CMOS camera takes pictures of scintillatior screen as it emits the light;
- Scintillator: Tb-Doped Gadolinium Oxysulfide (GadOx) screen;
- Radiation hard (up to 10 MGy).

Performance

- Signal/background ~100;
- Position resolution <0.5 mm (~50 MeV);
- Sufficiently high dynamic range (40dB);
- Successfully tested with electron beam.

Cherenkov Detector

- Gaseous Cherenkov detector;
- Low refractive index gas (air, n=1.0028), possibly optical filter to reduce light yield;
- Fine segmentation to resolve kinematic edges in Compton spectra
- Not sensitive to electrons <20 MeV and photon background;
- Signal/background >1000;
- The concept was successfully tested with the electron beam.

Electrons spectrum reconstructed from the layers of straws with Cherenkov light measurement

Cherenkov detector in Geant4 model: 240 straws of R = 2 mm in 4 layers

Geant4 simulation of Cherenkov light in the straw with $\varphi = 90^{\circ}$ and 45° .

Photon Detection System

High number of photon:

- up to 10⁹ photons;
- summing up to TeV energies;
- Confined in the cone ~0.2 mrad.

Three subsystems:

- Photon spectrometer
 - Measure photon energy spectrum and flux.
 - Gamma profiler made of sapphire strip sensors:
 - Measure transverse profile of the beam.
 - Backscattering calorimeter:
 - Measure flux.

Photon Spectrometer

- Tungsten convertor target (10 μm) generates 10⁴ 10⁵ electron/positron pairs;
- Dipole magnet: 1.4 T, 1.3 m;

- Electrons and positrons are detected by GadOx (Gd₂S₂O:Tb) scintillator screens coupled with photo cameras (implementation is similar to electron spectrometer);
- Energy resolution is better than 1%;
- Recorded electron and positron spectra are deconvoluted to extract the spectrum of the photons;

Gamma Beam Profiler

For linearly polarized laser the asymmetry in transverse profile of photon beam depends on laser intensity (ξ).

Design: • Two sapphire strip detectors placed on a table movable with micron precision in both directions perpendicular to beam 11.5 m from the IP;

- 2 sensors 2 × 2 cm² (100 μ m thickness) with 100 μ m strip pitch.
- 5% precision in laser intensity reconstruction.
- Sapphire is a novel, not widely used, detector material;
- High band gap (9.9 eV);
- very radiation hard (up to 10 MGy);
- Charge collection efficiency is relatively low;
- Suites for high beam intensities.
- Spatial distributions of the Compton photons hitting sapphire sensor for different laser intensities;
- Laser polarization results in x/y asymmetry.
- Measure laser intensity with 2.5% precision.

10⁶(X8/1)

15

Photon Flux Monitor

- Measure energy flow of particles back-scattered from the photon beam dump.
- Optimization of the design:
 - Reduce radiation load to provide reasonable lifetime
 - Measure sufficient fraction of the energy of the back scattering particles to be sensitive to the direct photon flux variation
- **Design:**
- 8 lead glass blocks, 3.8 × 3.8 × 45 cm³
- Placed on cylinder surface with R = 120 mm.

Performance in simulation:

- Almost linear dependence of the deposited energy and the number of incident photons.
- Estimated uncertainty is 3-10%

Performance in beam test:

- Three prototypes: lead glass block coupled to PMT.
- Electron beam 60 MeV, up to 25 pC (~ 10^8 e -).
- Good agreement between measurements and beam charge provided by the beam monitor.

Detector response obtained in Geant4 simulations

For $\xi > 1$, Ny > 10⁸ / BX

Summary

- LUXE experiment presents an exciting opportunity to explore QED in new regime using European XFEL and high power laser
- Designed detector systems will allow LUXE to achieve physics goals in experimental measurements
- The design of the experiment allows its operation without interference with main EU.XFEL program
- The review of LUXE technical design completed in 2022 received positive DESY Physics Review Committee feedback
- Goal is installation in 2025 during extended shutdown planned for European XFEL

Backup

LUXE participants

