Detector Challenges of the strong-field QED experiment LUXE at the European XFEL

Oleksandr Borysov
on behalf of LUXE collaboration

LUXE

		WEIZMANN INSTITUTE OF SCIENCE

More on LUXE physics:
Talk: Evan Ranken

* LUXE TDR: arXiv:2308.00515

Outline

- New experiment proposed at DESY and Eu.XFEL
- Study QED in Strong Field regime

는즐

* LUXE website: https://luxe.desy.de
- LUXE physics observables
- Design of experimental setup at European XFEL
- Summary

LUXE: Physics processes

Non-linear Compton Scattering:

$e^{-}+n \gamma_{L} \rightarrow e^{-}+\gamma$

Observables:

- Shift of first kinematic edge because of increase of electron effective mass: $m^{*}=m \sqrt{1+\xi}$;
- Position of other kinematic edges;
- Intensity of ny scattering.

Pair production:

non-linear Breit-Wheeler and trident

$e^{-}+n \gamma_{L} \rightarrow e^{-}+e^{+}+e^{-}$

Generating incident photon:

- Compton photons inside the same laser pulse => largest rate
- Bremsstrahlung photons produced upstream => highest E
- Inverse Compton scattering upstream (E=9 GeV)

Electron Beam at European XFEL

LUXE experiment will study Strong Field QED in collisions of high power laser with:

- XFEL electron beam;
- High energy photon beam produced by XFEL electrons in bremsstrahlung or ICS.

Eu XFEL:

- Linear electron accelerator
- Operates since 2017
- Used to generate X-ray photons
- Energy 16.5 GeV (possible 10 GeV , $14 \mathrm{GeV}, 17.5 \mathrm{GeV}$);
- Repetition rate 10 Hz ;
- LUXE uses one out of 2700 bunches per train;
- Focusing down to $\sigma_{x, y}: 5-20 \mu \mathrm{~m}$;
- Typically 1.5×10^{9} e-per bunch.

LUXE setup

LUXE setup conceptually contains two detector subsystems:

- Electron positron spectrometer
- Photon detection system

- Detector performance in LUXE setup was studied in GEANT4 and FLUKA simulations.
- Collision processes were simulated using strong field QED MC code PTARMIGAN*.

[^0]
LUXE setup

There are 3 beam dumps in the experimental area (two are highlighted) located few meters away from the detectors:

- They are sources of substantial background composed of e-, e+, photons and neutrons;
- Additional radiation load on the detectors and electronics:

Studies to optimize shielding and beam dumps design:

- Reduce the flux of particles in backward direction;
- Shielding to protect detectors from scattered particles;
- Consider timing to cut the background;
- Detailed study of neutron fluxes both in Geant4 and FLUKA simulations.

Positron Detection

Study e+e- pair production

Expected event rates per laser shot

- electron-laser mode: $10^{-2}-10^{4}$ e $^{+}$e- pairs
- gamma-laser mode: $10^{-2}-10$ e $^{+} e^{-}$pairs

Tracker

Reconstruction efficiency for events with 10k positrons

- Pixel size: $27 \times 29 \mu \mathrm{~m}^{2}$, spatial resolution $\sim 5 \mu \mathrm{~m}$;
- Good performance under irradiation - able to tolerate an ionization dose of up to 2.7 Mrad.

Energy resolution

Performance in MC simulation

- Four layers of two staves;
- Track reconstruction efficiency is above 95\%;
- Energy resolution < 1%, independent of energy.

Developing reconstruction algorithms for high multiplicity events based on ML and Quantum Computers: Talk: Yee Chinn Yap

Electromagnetic Calorimeter

- Ultra compact design developed by FCAL collaboration;
- Sampling calorimeter: 21 layers of 3.5 mm thick tungsten absorber plates (21 X0)
- Silicon sensors ($5.5 \times 5.5 \mathrm{~mm}^{2}$ pads, $320 \mu \mathrm{~m}$ thick), installed in 1 mm gap between absorbers;
- Small Molière radius, high spatial resolution of local energy deposits
- Readout via dedicated FLAME ASIC (developed in FCAL).

Performance in MC simulation

- Energy resolution ~20\%;
- Single particle position resolution $\sim 0.8 \mathrm{~mm}$ at 10 GeV ;
- Complementary measurement of positron energy spectra;
- Low energy distributed background rejection.

Special algorithm for high multiplicity events

capable of reconstructing spectra and number of particles based on distribution of deposited energy

Electron Detectors Setup

- Electrons after Compton scattering have continuous spectrum ranging from 16.5 GeV down to lowest energies within acceptance of the magnet;
- Beam pipe cannot be used;
- After exiting from the vacuum chamber electrons propagate in the air;

- Generate extra background.

Simulated 100 k electrons of 16.5 GeV .
Background particles hitting detectors and shielding

Electron Detection

- Expected event rate: up to 10^{9} electrons;
- Chosen technologies:
- Scintillator screen and Camera System;
- Cherenkov gas detector.

Scintillator Screen

- High resolution CMOS camera takes pictures of scintillatior screen as it emits the light;
- Scintillator: Tb-Doped Gadolinium Oxysulfide (GadOx) screen;
- Radiation hard (up to 10 MGy).

Performance

- Signal/background ~100;
- Position resolution <0.5 mm (~50 MeV);
- Sufficiently high dynamic range (40dB);
- Successfully tested with electron beam.

Cherenkov Detector

- Gaseous Cherenkov detector;
- Low refractive index gas (air, $n=1.0028$), possibly optical filter to reduce light yield;
- Fine segmentation to resolve kinematic edges in Compton spectra
- Not sensitive to electrons <20 MeV and photon background;
- Signal/background >1000;
- The concept was successfully tested with the electron beam.

Electrons spectrum reconstructed from the layers of straws with Cherenkov light measurement

Cherenkov detector in Geant4 model:
240 straws of $R=2 \mathrm{~mm}$ in 4 layers

Geant4 simulation of Cherenkov light in the straw with $\varphi=90^{\circ}$ and 45°.

Photon Detection System

High number of photon:

- up to 10^{9} photons;
- summing up to TeV energies;
- Confined in the cone $\sim 0.2 \mathrm{mrad}$.

Three subsystems:

- Photon spectrometer
- Measure photon energy spectrum and flux.
- Gamma profiler made of sapphire strip sensors:
- Measure transverse profile of the beam.
- Backscattering calorimeter:
- Measure flux.

Photon Spectrometer

- Tungsten convertor target ($10 \mu \mathrm{~m}$) generates $10^{4}-10^{5}$ electron/positron pairs;
- Dipole magnet: 1.4 T, 1.3 m;

- Electrons and positrons are detected by $\mathrm{GadOx}\left(\mathrm{Gd}_{2} \mathrm{~S}_{2} \mathrm{O}: \mathrm{Tb}\right)$ scintillator screens coupled with photo cameras (implementation is similar to electron spectrometer);
- Energy resolution is better than 1\%;
- Recorded electron and positron spectra are deconvoluted to extract the spectrum of the photons;

Reconstructed photon spectrum for different laser intensity

Gamma Beam Profiler

For linearly polarized laser the asymmetry in transverse profile of photon beam depends on laser intensity ($($).

Design: - Two sapphire strip detectors placed on a table movable with micron precision in both directions perpendicular to beam 11.5 m from the IP;

- 2 sensors $2 \times 2 \mathrm{~cm}^{2}$ ($100 \mu \mathrm{~m}$ thickness) with $100 \mu \mathrm{~m}$ strip pitch.
- 5% precision in laser intensity reconstruction.
- Sapphire is a novel, not widely used, detector material;
- High band gap (9.9 eV);

- very radiation hard (up to 10 MGy);
- Charge collection efficiency is relatively low;
- Suites for high beam intensities.
- Spatial distributions of the Compton photons hitting sapphire sensor for different laser intensities;
- Laser polarization results in x / y asymmetry.
- Measure laser intensity with 2.5% precision.

Photon Flux Monitor

- Measure energy flow of particles back-scattered from the photon beam dump.
- Optimization of the design:
- Reduce radiation load to provide reasonable lifetime
- Measure sufficient fraction of the energy of the back scattering particles to be sensitive

For $\xi>1, \mathrm{Ny}>10^{8} / \mathrm{BX}$ to the direct photon flux variation

Design: - 8 lead glass blocks, $3.8 \times 3.8 \times 45 \mathrm{~cm}^{3}$

- Placed on cylinder surface with $\mathrm{R}=120 \mathrm{~mm}$.

Performance in simulation:

- Almost linear dependence of the deposited energy and the number of incident photons.
- Estimated uncertainty is $3-10 \%$

Performance in beam test:

- Three prototypes: lead glass block coupled to PMT.
- Electron beam 60 MeV , up to 25 pC ($\sim 10^{8} \mathrm{e}$-).
- Good agreement between measurements and beam charge provided by the beam monitor.

Detector response obtained in Geant4 simulations

Summary

- LUXE experiment presents an exciting opportunity to explore QED in new regime using European XFEL and high power laser
- Designed detector systems will allow LUXE to achieve physics goals in experimental measurements
- The design of the experiment allows its operation without interference with main EU.XFEL program
- The review of LUXE technical design completed in 2022 received positive DESY Physics Review Committee feedback
- Goal is installation in 2025 during extended shutdown planned for European XFEL

Thanks for your attention

Backup

LUXE participants

[^0]: * T. Blackburn \& B. King, EPJC 82, 44.

