Prospects $B_c^+/B^+ \rightarrow \tau^+ \nu_{\tau}$ at FCC-ee

Marco Fedele, Clément Helsens, Donal Hill, Syuhei Iguro, Markus Klute, Xunwu Zuo

1. Institut für Theoretische Teilchenphysik (TTP), Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany 2. Institut für Experimentelle Teilchenphysik (ETP), Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany 3. Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland 4. Institut für Astroteilchenphysik (IAP), Karlsruhe Institute of Technology, D-76344 Eggenstein-Leopoldshafen, Germany

1. Motivation - independent probe of $b \rightarrow q \ell \nu$

• 6×10^{12} Z bosons expected at FCC-ee

- About 1M $B_c^+ \rightarrow \tau^+ \nu_{\tau} (\pi^+ \pi^+ \pi^- \bar{\nu}_{\tau})$
- About 7M $B^+ \rightarrow \tau^+ \nu_{\tau} (\pi^+ \pi^+ \pi^- \bar{\nu}_{\tau})$
- Resolve inclu. vs exclu. puzzle Complementary test to R(D) and in $|V_{\mu b}|$ and $|V_{cb}|$

 $R(D^*)$ anomalies (3.3 σ from SM)

	a de la constante de la consta La constante de la constante de	รามารถการการการการการการการการการการการการการก
~ 0.4 [
- HFLAV		$\Delta \chi^2 = 1.0$ contours
Summer 2023		

R(D)

2. Experimental projection

3. Phenomenological interpretation

 $|\mathbf{V_{ub}}|$ extracted from $\mathscr{B}(B^+ \to \tau^+ \nu_{\tau})$ result

Other theory inputs have negligible uncertainties

- signal hemisphere • More SV in B_c^+ events, due to hadronization
- Multi-classifier MVA for B^+ vs. B_c^+ vs. bkg
- Little cross-contamination between signals
- Select orthogonal corners for B^+ and B_c^+ categories
- Final selections rejects $Z \rightarrow b\bar{b}$ bkg at 10^{-10} level

BSM constraints from $B_c^+ \rightarrow \tau^+ \nu_{\tau}$ result

- Normalized to $B_c^+ \rightarrow J/\psi \mu^+ \nu_\mu$ to factor out SM inputs
- Consider Generic 2HDM model and leptoquark models

Simultaneous binned maximum likelihood fit

- All background unconstrained in fits
- Precisions evaluated with optimistic to pessimistic bkg yields

green shades for direct searches for LQ

EPS-HEP2023, Hamburg

Full study in <u>arXiv 22305.02998</u>

1.0

xunwu.zuo@cern.ch