

Examining Semileptonic Decays of $B_s ightarrow D_s^{**}$ Mesons Beyond The Standard Model

INTRODUCTION

- In $b \to c \tau \bar{\nu}_{\tau}$ transitions, anomalies as observed in the measured Lepton Flavor Universality (LFU) ratios $R_{D^{(*)}}$ have indicated the possible existence of new physics (NP) beyond the standard model (SM).
- The current combined tension of $R_{D^{(*)}}$ with the SM stands at about 3.3σ [1]. Other measured observables like the LFU ratio $R_{J/\psi}$, the D^* polarization $F_L^{D^*}$ and the τ polarization $P_{\tau}^{D^*}$ have also suggested the need to search for NP.
- It is, therefore, imperative that NP be probed in similar decay modes mediated by $b \to c \tau \bar{\nu}_{\tau}$ transitions. In this work, we focus on the complementary decay channels $B_s \to D_s^{**} \tau \bar{\nu}_{\tau}$, where $D_s^{**} = \{D_{s0}^*, D_{s1}^*, D_{s1}, D_{s2}^*\}$. The D_s^{**} states have narrow decay widths which may make their decays easier to measure in experimental colliders.
- Within a model-independent effective field theory approach, we analyze these decay modes, testing the sensitivity to NP of various q^2 -dependent observables. In particular, we examine the LFU ratio $R_{D_s^{**}}$, the forward-backward asymmetry A_{FB}^{τ} and the convexity parameter C_{F}^{τ} .

EFFECTIVE LAGRANGIAN

The effective Lagrangian for $b \to c \ell \bar{\nu}_{\ell}$ transitions is written as

$$\mathcal{L}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{cb} \left[(1 + C_{V_L}^{\ell}) O_{V_L}^{\ell} + C_{V_R}^{\ell} O_{V_R}^{\ell} + C_{S_L}^{\ell} O_{S_L}^{\ell} + C_{S_R}^{\ell} O_{S_R}^{\ell} + C_{S_R}^{\ell} O_{S_R}^{\ell}$$

where $C_{V_{L,R}}, C_{S_{L,R}}, C_T$ are the vector, scalar and tensor type NP couplings, and the four-fermion operators are defined as

$$O_{V_L}^{\ell} = (\bar{c}\gamma^{\mu}P_Lb)(\bar{\nu}_{\ell}\gamma_{\mu}P_L\ell), \ O_{V_R}^{\ell} = (\bar{c}\gamma^{\mu}P_Rb)(\bar{\nu}_{\ell}\gamma_{\mu}P_L\ell), O_{S_L}^{\ell} = (\bar{c}P_Lb)(\bar{\nu}_{\ell}P_R\ell), \ O_{S_R}^{\ell} = (\bar{c}P_Rb)(\bar{\nu}_{\ell}P_R\ell), O_T^{\ell} = (\bar{c}\sigma^{\mu\nu}P_Lb)(\bar{\nu}_{\ell}\sigma_{\mu\nu}P_R\ell).$$

OBSERVABLES

The two-fold angular decay distribution can be expressed as [2]

$$\frac{d^2\Gamma}{dq^2dcos\theta_\ell} = a(q^2) + b(q^2)cos\theta_\ell + c(q^2)cos^2\theta_\ell,$$

where $a(q^2), b(q^2), c(q^2)$ are q^2 -dependent coefficients that are sensitive to NP contributions.

Integrating out $cos\theta_{\ell}$, we can obtain the differential decay rate $d\Gamma/dq^2$, from which we construct the LFU ratio $R_{D_{*}^{**}}$

$$R_{D_s^{**}} = \frac{d\Gamma(\tau)/dq^2}{d\Gamma(\ell)/dq^2}.$$

The forward-backward asymmetry is defined as

$$A_{FB}^{\tau} = \frac{\left(\int_{0}^{1} - \int_{-1}^{0}\right) \frac{d^{2}\Gamma}{dq^{2}d\cos\theta_{\ell}} d\cos\theta_{\ell}}{\left(\int_{0}^{1} + \int_{-1}^{0}\right) \frac{d^{2}\Gamma}{dq^{2}d\cos\theta_{\ell}} d\cos\theta_{\ell}} = \frac{b(q^{2})}{d\Gamma/dq^{2}},$$

and the convexity as

$$C_{F}^{\tau} = \frac{\left(\int_{1/2}^{1} - \int_{-1/2}^{1/2} + \int_{-1}^{-1/2}\right) \frac{d^{2}\Gamma}{dq^{2}d\cos\theta_{\ell}} d\cos\theta_{\ell}}{\left(\int_{0}^{1} + \int_{-1}^{0}\right) \frac{d^{2}\Gamma}{dq^{2}d\cos\theta_{\ell}} d\cos\theta_{\ell}} = \frac{c(q^{2})}{2(d\Gamma/dq^{2})}.$$

Karthik Jain^{*} and Barilang Mawlong School of Physics, University of Hyderabad, Hyderabad-500046, India *jainkarthikm@gmail.com

FORM FACTORS

The form factors for the $B_s \to D_s^{**}$ transitions are calculated within the Heavy Quark Effective Theory (HQET) framework [3], where they are parametrized by the leading order Isgur-Wise functions and given to linear order in (w - 1) as :

$$\tau(\omega) \simeq \tau(1) [1 + \tau'(w - \omega)]$$

$$\zeta(\omega) \simeq \zeta(1)[1 + \zeta'(w - \zeta)]$$

Following [3], we consider approximation C to obtain the values of the form factor parameters. The function $\zeta(w)$ determines the form factors for transitions involving D_{s0}^* and D_{s1}^* , whereas the function $\tau(w)$ determines the form factors for transitions involving D_{s1} and D_{s2}^* .

NP COUPLINGS

The values of the new couplings $C_k(k = V_L, S_L, S_R)$ are taken from [4], where a χ^2 fit was performed using the experimentally measured values of $R_{D^{(*)}}$, $R_{J/\psi}$, $F_L^{D^*}$ and $P_{\tau}^{D^*}$, and considering an upper bound 30% of $\mathcal{B}(B_c^+ \to \bar{\tau}\nu_{\tau})$. Considering one new coupling at a time, the obtained best fit values of the couplings along with their 1σ range are given in the table below :

C_k	Best fit value	1σ range	Pull
C_{V_L}	0.0687	[0.0513, 0.0858]	3.8630
C_{S_L}	0.1348	[0.0879, 0.179]	2.7731
C_{S_R}	0.1483	[0.1068, 0.1877]	3.4043

Table 1: Best fit values of NP couplings

 $C_T^{\ell}O_T^{\ell} + h.c.,$

 $L\ell),$

- 1)

Result : q^2 -dependence for the mode $B_s o D^*_{s2} au ar{
u}_{ au}$

DISCUSSION AND CONCLUSION

- sensitive to new physics compared to A_{FB}^{τ} and C_{F}^{τ} .
- presented here.
- the SM for the scalar couplings.

References

- summer23/html/RDsDsstar/RDRDs.html.

• For the considered decay modes, it is observed that the ratio $R_{D_s^{**}}$ is more

• $R_{D_*^*}$ displays maximum new physics effects in the presence of the vector C_{V_L} coupling, rather than in the presence of the scalar $C_{S_{L(R)}}$ couplings. For all the decay modes, C_{V_L} effects tend to favour the tau mode in comparison with the SM. For A_{FB}^{τ} and C_{F}^{τ} , NP effects of C_{VL} cancel out in these ratios and are not

• In the presence of C_{S_L} , the ratios $R_{D_{s_0}^*}$ and $R_{D_{s_1}}$ indicate a deficit of taus, while $R_{D_{s1}^*}$ displays an excess of taus, in comparison with the SM. In the presence of C_{S_R} , the ratio $R_{D_{s1}}$ indicate a deficit of taus, while $R_{D_{s0}^*}$ and $R_{D_{s1}^*}$ display excess of taus, in comparison with the SM. The ratio $R_{D_{22}^*}$ is in agreement with

• The observables considered here have shown a varied pattern in their dependence on NP interactions. Their precise measurements will help to substantiate or rule out various NP scenarios. This can be a crucial complementary information on the structure of NP in $b \to c \tau \bar{\nu}_{\tau}$ transitions.

[1] HFLAV Collaboration, https://hflav-eos.web.cern.ch/hflav-eos/semi/ [2] D. Bečirević, F. Jaffredo, A. Peñuelas and O. Sumensari, JHEP 05, 175 (2021)

[3] F. U. Bernlochner, Z. Ligeti, and D. J. Robinson, Phys. Rev. D 97 (7), 075011 (2018).

[4] C. P. Haritha, K. Jain, and B. Mawlong, Nucl. Phys. B. 994, 116309 (2023).