

Search for Lepton Flavor Violation in the Top Quark Interactions with CMS Jiwon Park, on behalf of CMS Collaboration | DESY, jiwon.park@cern.ch

Introduction

- Neutrino oscillation suggests the existence of charged lepton flavor violation (CLFV)
- Deviations in B meson decay give hints on CLFV in low energy
- Explore high energy CLFV mediated by top quark with LHC
- Presenting the latest trilepton final state result,

CMS PAS-TOP-22-005

Signal model

• Seesaw mechanism or leptoquark can enable CLFV processes

- **Background estimation (cont.)**
- Lepton distribution from background estimation

- Uncertainties: Prompt background contamination in MR + difference between AR and MR + statistical components ~ 10-30%
- Alternatively, introduce Effective Field Theory (EFT) assuming higher mass scale of $\Lambda = 1 \text{ TeV}$

$$\mathcal{L} = \mathcal{L}_{\rm SM}^{(4)} + \frac{1}{\Lambda^2} \sum_{a} C_a^{(6)} O_a^{(6)} + O(\frac{1}{\Lambda^4})$$

• Warsaw basis of dim-6 operator gives following set of operators

vector	$O_{lq}^{(1)ijkl}$ O_{lu}^{ijkl} O_{eq}^{ijkl}	$ (\bar{l}_i \gamma^{\mu} l_j) (\bar{q}_k \gamma^{\mu} q_l) (\bar{l}_i \gamma^{\mu} l_j) (\bar{u}_k \gamma^{\mu} u_l) (\bar{e}_i \gamma^{\mu} e_j) (\bar{q}_k \gamma^{\mu} q_l) $
	O_{eu}^{ijkl}	$(\bar{e}_i\gamma^{\mu}e_j)(\bar{u}_k\gamma^{\mu}u_l)$
scalar	$O_{lequ}^{(1)ijkl}$	$(\bar{l}_i e_j) \varepsilon (\bar{q}_k u_l)$
tensor	O _{lequ} (3)ijkl	$(\bar{l}_i \sigma^{\mu\nu} e_j) \varepsilon (\bar{q}_k \sigma_{\mu\nu} u_l)$

production (right) signals

MR: Measurement Region, AR: Application Region

Signal extraction

- BDTs for top decay (m($e\mu$) < 150 GeV) and production (m($e\mu$) > 150 GeV) enriched regions
- Important variables:
- Decay: m_7 , # of b-jets, and m_{LFVtop}

Production: $m(e\mu)$, and p_T of LFV electron and muon

• BDT postfit distributions:

Selections

- MVA based lepton identification, isolated, $p_T > 38$ (20) GeV, $|\eta| < 2.4$
- Jet with $p_T > 30$ GeV, $|\eta| < 2.4$, b-tagging by DeepJet

Channel	Region	OnZ	OffZ	$p_{\rm T}^{\rm miss} > 20 { m GeV}$	# jets ≥ 1	# b jets ≤ 1
eee/µµµ	VR	_	-	-	_	_
	WZ CR	\checkmark	-	\checkmark	\checkmark	\checkmark
eµl	SR	_	\checkmark	\checkmark	\checkmark	\checkmark
	VR	\checkmark	-	_	_	_
	WZ CR	\checkmark	-	\checkmark	\checkmark	\checkmark

On Z: 50 < m₁₁ < 106 GeV

Background estimation

• Background is dominated by events with nonprompt lepton(s)

Result and conclusion

- No significant excess over SM prediction
- Upper limits are set at 95% CL for Wilson coefficient and BF

CLFV coupling	Lorentz structure	$C_{e\mu tq}/\Lambda^2$ (TeV ⁻	$^{-2})$	${\cal B}({ m t} ightarrow{ m e}\mu{ m q}) imes10^{-6}$	
		$\exp(-\sigma, +\sigma)$	obs	$\exp(-\sigma, +\sigma)$	obs
eµtu	tensor	0.019 (0.015, 0.023)	0.020	0.019 (0.013, 0.029)	0.023
	vector	0.037 (0.031, 0.046)	0.041	0.013 (0.009, 0.020)	0.016
	scalar	0.077 (0.064, 0.095)	0.084	0.007 (0.005, 0.011)	0.009
eµtc	tensor	0.061 (0.050, 0.074)	0.068	0.209 (0.143, 0.311)	0.258
	vector	0.130 (0.108, 0.159)	0.144	0.163 (0.111, 0.243)	0.199
	scalar	0.269 (0.223, 0.330)	0.295	0.087 (0.060, 0.130)	0.105

interpolated limits are obtained assuming a linear relation • 2D between u and c quark final states

- Mainly tt and Z+jets processes
- Nonprompt background is estimated with a data-driven method called "matrix method" [1] and validated using validation region
- Prompt backgrounds are modelled with simulation and checked using control regions

[1] JHEP11 (2014) 031

• Marked top quark branching fraction at the level of 10^{-7} – 10^{-8} • One order of magnitude improvement in $e\mu$ tc channel compared to CMS TOP-19-006 [JHEP 06 (2022) 082]

