

IMPROVED SIMULATIONS FOR THE PRODUCTION AND DECAY OF TOP QUARKS WITH MG5 AMC@NLO

Eps-Hep 2023

AUG 23RD, 2023

BASED ON:

SIMONE AMOROSO, S. FRIXIONE, S. MRENNA, ARXIV:2308.06389 [HEP-PH]

SIMONE AMOROSO, R. FREDERIX, S.FRIXIONE, A. PIZZINI, IN PREPARATION

SIMULATION OF UNSTABLE PARTICLES AT COLL ERS

- Simulation of massive unstable particles at colliders is of particular phenomenological relevance (W, Z, top, Higgs, BSM, ...)
- For the production of stable resonances, NLOPS with Powheg and MC@NLO matching available and automated since 10 years
- NNLOPS new frontier: MiNNLOPS for color singlets and top-pair production

For resonance decays, situation is less standardized: D different level of approximations/complexities are possible

P. Nason, JHEP 0411 (2004) 040 S. Frixione, B. Webber, JHEP 06 (2002) 029

P. Monni et al, JHEP 05 (2020) 143

 $bbll \nu \bar{\nu}$ DD

SIMULATION OF UNSTABLE PARTICLES AT COLLIDERS

- *Madspin*: resonance decays and spin correlations at LO
- *Exact matrix-elements:* NLO corrections to decay and full off-shell effects
 - $pp \to t\bar{t} \otimes t \to Wb$

Will present results for the latter two approaches in the context of MC@NLO matched simulations with the mg5_aMC@NLO+Pythia8 code

J. Alwall et al, JHEP 07, 079 (2014) C. Bierlich et al. SciPost Phys. Codebases 8 (2022)

S. Frixione, E. Laenen, P. Motylinski, B.R. Webber, JHEP 04, 081 (2007)

Matrix-element corrections (MEC): reweight shower emission to tree-level ME

E. Norrbin, T. Sjöstrand, Phys. Lett. B 449, 313 (1999)

T. Jezo et al, Eur.Phys.J.C 76 (2016) 12, 691

MEC AND MCONLO MATCHING

- MC@NLO MC subtraction term determined for a shower without any MEC
 - MEC for production certain to spoil MC@NLO simulation accuracy
 - MEC for decays can instead be included without double counting
- Shower however separates MEC into initial- and final-state emissions
 - Needs to distinguish production and decay MEC in the final-state shower

Part of the MC@NLO MC subtraction

Not included in the MC@NLO MC subtraction

MEC AND MC@NLD MATCHING

- Due to these subtleties, MEC in decay have so far been switched off in MC@NLO matched simulations, while they are included in Powheg
- It is however possible in Pythia8.3 to separate MEC coming from top-quark production and from top-quark decay

Part of the MC@NLO MC subtraction

Timeshower:MECorrections=on TimeShower:MEextended=off

NB, syntax works for most processes, but not all! Future Pythia version to include switches for finer control over MEC

Not included in the MC@NLO MC subtraction

PHENOMENOLOGICAL STUDY

- comparing the following simulations:
 - mg5_aMC@NLO + Pythia8 LO and NLO QCD events showered with and without MEC in decay
 - Powheg HVQ + Pythia8 (with MEC) S. Frixione, P. Nason, G. Ridolfi, JHEP 0709 (2007) 126
 - Standalone Pythia8 (with MEC)
- Consider stable top-quark production in pp collisions at 13 TeV
- We set $m_{top}=172.5$ GeV and use the NNPDF31nnlo PDF for all three cases. \triangleright Settings related to the production (scales, h_{damp} , μ_{sh}) left to their default values
- For all events, we decay the tops using Madspin, which we then shower in Pythia8.309 with the Monash tune and using the appropriate settings and vetoes

To evaluate the impact of MEC in decay we performed a phenomenological study

J. Alwall et al, JHEP 07, 079 (2014)

C. Bierlich et al. *SciPost Phys. Codebases 8 (2022)*

RECONSTRUCTED TOP-QUARK MASS DISTRIBUTION

The peak of the top quark mass reconstructed from its decay products shows large differences between mg5_aMC@NLO and Powheg, Pythia8

They are significantly reduced after including MEC to decays in mg5_aMC@NLO

M_{BL} DISTRIBUTION

The m_{bl} distribution has a kinematic edge at ~150 GeV sensitive to the top mass. In this region MEC to decay brings the three codes in agreement

Above 150 GeV differences in the production give residual ~20% differences

PROPERTIES OF B-QUARK JETS

The b-jet shape and b-fragmentation function are sensitive to the pattern of emission inside the b-jet, modified by higher order corrections Differences of up to 20% visible when including MEC in decay

B-JET SUBSTRUCTURE IN DATA

Comparing to CMS 13 TeV jet substructure observables in ttbar Ø

Reduction in spread among generators, and improved description of the data

RESONANCE-AWARE MATCHING WITH MC(QNLO)

Consider simulation for the full 6-fermion process at NLOPS with mg5_aMC@NLO Requires handling of intermediate resonant states in the matching to the shower

Formalism exists and first applied to off-shell Wt production in the 4FS

R. Frederix et al, JHEP 06 (2016) 027

- definition of the MC@NLO MC counterterms
- treatment of resolved MC emissions off intermediate resonances
- Writing of resonances information in the LHE record (for correct shower treatment)

BB4L WITH MG5 AMC@NLD

Generation done with mg5_aMC@NLO public code v2.9.13

import model loop_sm define mupm = mu + mu define epm = e+ edefine $vmupm = vm vm^{2}$ define vepm = ve ve~ set complex mass scheme generate p p > epm mupm vmupm vepm b b~ [QCD]

- $m_{top} = 172.5$, $\Gamma_{top} = 1.33$ GeV, NNPDF31nnlo 4FS PDFs
- Consider both **bb4** process and **WWbb** + **Madspin**
 - Decaying the Ws with Madspin allows for same-flavor dileptonic decays or semileptonic (but would be missing some non-resonant diagrams!!)

Compare to standard ttbar+Wt production + Madspin (using a LO top-width)

PROPERTIES OF B-QUARK JETS

- at the 10% level between LOPS and NLOPS simulations
- MEC in decays improve the agreement with bb4l, but

Distributions sensitive to radiation in top decay exhibit differences

residual differences around the peak of the fragmentation-function

DESCRIPTION OF THE OFF-SHELL REGION

- ATLAS 13 TeV measurement of m_{bl}^{minimax} used as benchmark
- Good description of the data with both bb4l and WWbb+Madspin
- MEC to top decay brings tt+Wt closer to bb4l around the kinematic edge
- tt+Wt with LO width significantly below the data in the off-shell region
- Better agreement with an NLO width

ATLAS Collaboration, Phys.Rev.Lett. 121 (2018) 15

COMPUTATIONAL CONSIDERATIONS

- MEC to top decays do not impact computing performance
- Improved accuracy of bb4I and WWbb comes with computational cost:
 - Longer integration/event generation time
 - Large fraction of negative weighted events
- Mitigation techniques such as *folding* or *MC@NLO-* Δ matching* do not change the negative weight fraction significantly R. Frederix et al, JHEP 07 (2020) 238
 - Still helpful as one needs to simulate/ntuplise/analyse less events

	MC@NLO			$MC@NLO-\Delta$		
Folding parameters (n ξ , ny , n $\varphi)$	111	221	441	111	22 1	441
Neg. events fraction	43.55~%	42.08~%	41.08~%	40.87~%	37.66~%	36.09~%
Relative cost function $c(f)$	60.09	39.86	31.42	30.00	16.42	12.92
Elapsed time 10^3 events (min)	16	30	68	24	51	94
Effective time $(c(f) \times time)$ (min)	961	1196	2137	720	837	1215

* New public version of $MC@NLO-\Delta$ expected to perform better

- processes with the mg5_aMC@NLO program
- Inclusion of *Matrix-Element Corrections to resonance decays* https://amcatnlo.web.cern.ch/amcatnlo/list_detailed2.htm

 - Reduces differences across generators
- Full off-shell calculation of the bb4l process or WWbb+Madspin
- NLO accuracy for top decays and interference with Wt process
- Comes at a significant computational burden (CPU cost and negative weights fraction)

Very *relevant for LHC phenomenology* and precision top-quark measurements

SUMMARY

Presented two approaches to *improve the simulation of top-quark production*

Promotes radiation from top decays to NLO accuracy (requires special settings)

BACKUP

- Matrix-Element corrections (MEC) to the top decay are used when
- An event-wide global recoil is used for the Pythia8 FSR emissions
 - Huge effect when considering top decay sensitive observables
 - Disabling MEC to the decay in Powheg restores agreement with mg5_aMC@NLO
 - H7 adds MEC in MC@NLO matching, unclear if this adds some double-counting

