Compatibility between theoretical predictions at NNLO QCD accuracy and experimental data for top-antitop hadroproduction at the LHC

Maria Vittoria Garzelli¹, Javier Mazzitelli², Sven-Olaf Moch¹, Sasha Zenaiev¹

¹ II Institut f
ür Theoretische Physik, Universit
ät Hamburg
 ² PSI, Villigen

EPS-HEP2023 conference, Hamburg, August 20-25, 2023

Introduction

Why studying $t\bar{t}$ production?

Example:

- m_t provides a hard scale \Rightarrow ultimate probe of pQCD (NLO, aNNLO, NNLO, ...)
- Produced mainly via gg ⇒ constrain gluon PDF at high x
- Production sensitive to α_s and m_t
- May provide insight into possible new physics

- Simultaneous extraction of PDFs, α_s, m_t^{pole} using normalised triple-differential cross sections at NLO
- Extended to MS, MSR schemes in JHEP 04 (2021) 043 [Garzelli, Kemmler, Moch, Zenaiev]

Scope of this work

- NNLO computations for total and multi-differential pp → tt
 + X cross-sections can now be performed thanks to the publicly available MATRIX framework [Catani, Devoto, Grazzini, Kallweit, Mazzitelli Phys.Rev.D 99 (2019) 5, 051501; JHEP 07 (2019) 100]
 - fully differential NNLO calculations were also published in JHEP 04 (2017) 071 [Czakon, Heymes, Mitov], but no public code available. Part of their predictions can however now be accessed through the HighTEA (database) platform
- - ► however, for 3D x-sections in $M(t\bar{t})$, $y(t\bar{t})$, N_{jet} [CMS TOP-18-004] NNLO calculations are not yet available for $t\bar{t}$ + jets + X
- For the time being, we focus on PDF and m_t^{pole} sensitivity and look at double-differential $M(t\bar{t})$, $y(t\bar{t})$ x-sections
 - $M(t\bar{t})$ provides sensitivity to m_t via threshold effects
 - ▶ $y(t\bar{t})$ provides sensitivity to PDFs via relation to partonic momentum fraction *x*: at LO $x_{1,2} = (M(t\bar{t})/\sqrt{s}) \exp [\pm y(t\bar{t})]$
- We also consider the most recent results for total cross-sections (for which theory tools are already publicly available since long)

Theoretical calculations with MATRIX + PineAPPL framework

- Using private version of MATRIX [Grazzini, Kallweit, Wiesemann, EPJC 78 (2018) 537]
- Interfaced to PineAPPL [Carrazza at al., JHEP 12 (2020) 108] to produce interpolation grids which are further used in xFitter https://gitlab.com/fitters/xfitter
 - reproduce NNLO calculations using any PDF + $\alpha_s(M_7)$ set and/or varied μ_r , μ_f in \sim seconds
 - interface implemented privately and only for the $pp \rightarrow t\bar{t} + X$ process
- Further modifications to MATRIX to make possible runs with $\Delta \sigma_{t\bar{t}} = 0.05\%$
 - recycling of parts of computations already done, instead of repeating them (tailored for tt)
 - adapted to DESY Bird Condor cluster
 - technical fixes related to memory and disk space usage, etc.
- We did runs with different m^{pole} values 165–177.5 GeV with step of 2.5 GeV and $\Delta \sigma_{t\bar{t}} = 0.05\%$
 - $\triangleright \approx 60000$ CPU hours/run (~5 years on a single CPU)
 - for differential distributions, statistical uncertainties in bins are ~ 1% \rightarrow not negligible compared to data precision and included in χ^2 calculation
 - currently exploring the possibility to improve further to $\Delta \sigma_{t\bar{t}} = 0.02\%$
- Differential distributions obtained with fixed $r_{cut} = 0.0015 (q_T \text{ subtraction})$
 - checked that extrapolation to $r_{cut} = 0$ for total $\sigma(t\bar{t} + X)$ produces differences < 1%. see also S. Catani et al., JHEP 07 (2019) 100
- $\mu_r = \mu_f = H_T/4$, $H_T = \sqrt{m_t^2 + p_T^2(t)} + \sqrt{m_t^2 + p_T^2(t)}$, varied up and down by factor 2 with $0.5 < \mu_r/\mu_f < 2$ (7-point variation)

Validation of NNLO computations vs JHEP 04 (2017) 071 by Czakon, Heymes, Mitov [CHM]

Good agreement (assume that CHM also have uncertainty ~ 1%); LO and NLO in BACKUP

ATLAS and CMS data

- For the time being: only measurements at 13 TeV where double-differential $M(t\bar{t})$, $y(t\bar{t})$ cross sections at parton level are available
 - (1) CMS EPJ C80 (2020) 658 [1904.05237, TOP-18-004]:
 2D x-sections in dileptonic channel, L = 35.9 pb⁻¹
 - for 3D $M(t\bar{t})$, $y(t\bar{t})$, N_{iet} x-sections, NNLO is not available for $t\bar{t}$ + jets + X
 - (2) CMS Phys.Rev.D104 (2021) 9, 092013 [2108.02803, TOP-20-001]:
 2D x-sections in I+jets channel, L = 137 pb⁻¹
 - (3) ATLAS EPJ C79 (2019) 1028 [1908.07305]:
 2D x-sections in I+jets channel, L = 36 pb⁻¹
 - (4) ATLAS JHEP 01 (2021) 033 [2006.09274]:
 2D x-sections in all-hadronic channel, L = 36.1 pb⁻¹
- For all measurements, we use normalised x-sections unfolded to the final-state parton level
- We use information on correlations of experimental uncertainties as provided in the paper (1) or in the HEPDATA database (2,3,4)
 - assumed no correlation between different measurements (reasonable assumption for normalised x-sections)
- Additionally, comparisons with measurements at other centre-of-mass energy (Run 1), and also total tt + X x-section

CMS TOP-18-004 vs NNLO predictions using different PDFs

• Fixed $m_t^{\text{pole}} = 172.5 \text{ GeV}, \, \mu_r = \mu_f = H_T/4$

- Reported χ^2 values with (and without) PDF uncertainties
- All PDF sets describe data reasonably well, with best description by ABMP16

CMS TOP-20-001 vs NNLO predictions using different PDFs

• Fixed $m_t^{\text{pole}} = 172.5 \text{ GeV}, \ \mu_r = \mu_f = H_T/4$

- Reported χ² values with (and without) PDF uncertainties
- All PDF sets describe data reasonably well, with best description by ABMP16
 - CT18, MSHT20 and NNPDF40 show clear trend w.r.t data at high y(tt) (large x)
- This is most precise currently available dataset with finest bins

ATLAS 1908.07305 vs NNLO predictions using different PDFs

• Fixed $m_t^{\text{pole}} = 172.5 \text{ GeV}, \, \mu_r = \mu_f = H_T/4$

- Reported χ² values with (and without) PDF uncertainties
- All PDF sets describe data equally well
- ²/dof < 1 indicating possible overestimation of experimental uncertainties
 (additionally, the data covariance matrix is not singular, i.e. det(cov) ≠ 0: to be checked if
 this is related to some numerical inaccuracy or other reasons. This affects estimates of
 correlated uncertainties. Same issue in the √s = 8TeV ATLAS analysis [arXiv:1607.07281].

ATLAS 2006.09274 vs NNLO predictions using different PDFs

• Fixed $m_t^{\text{pole}} = 172.5 \text{ GeV}, \, \mu_r = \mu_f = H_T/4$

- Reported χ² values with (and without) PDF uncertainties
- All PDF sets describe data equally well
- $\chi^2/dof < 1$ indicating possible overestimation of experimental uncertainties

Data vs NNLO predictions using different PDFs: summary

PDF	$t\bar{t}$ data in PDF fit	χ^2 /dof (all data)	
		w/ PDF unc.	w/o PDF unc.
ABMP16	only total $\sigma(t\bar{t} + X)$	52/78	57/78
CT18	total and diff. $\sigma(t\bar{t} + X)$	72/78	237/78
MSHT20	total and diff. $\sigma(t\bar{t} + X)$	83/78	185/78
NNPDF4.0	total and diff. $\sigma(t\bar{t} + X)$	89/78	122/78

No PDF fit include the datasets (1)-(4) that we considered

NNPDF4.0 include single-differential data from CMS studies [1803.08856, 1811.06625], using 2016 events, with partial overlap with the events used in the independent CMS Run 2 analyses that we considered. Additionally they include the double-differential Run 1 CMS dataset [arXiv:1703.01630], that we also include in our fits.

CMS TOP-18-004 vs NNLO predictions using different m^{pole}_t

- Using ABMP16, $\mu_r = \mu_f = H_T/4$
- Reported χ² values with PDF uncertainties
- Large sensitivity to m_t^{pole} in the first $M(t\bar{t})$ bin (and due to x-section normalisation, also in other $M(t\bar{t})$ bins)

CMS TOP-20-001 vs NNLO predictions using different m^{pole}_t

- Using ABMP16, $\mu_r = \mu_f = H_T/4$
- Reported χ^2 values with PDF uncertainties
- Large sensitivity to m_t^{pole} in the first $M(t\bar{t})$ bin (and due to x-section normalisation, also in other $M(t\bar{t})$ bins)
- Fluctuations of theory predictions are \lesssim 1% and covered by the assigned uncertainty of 1%

ATLAS 1908.07305 vs NNLO predictions using different m^{pole}_t

- Using ABMP16, $\mu_r = \mu_f = H_T/4$
- Reported χ² values with PDF uncertainties
- Large sensitivity to m^{pole}_t in the first M(tt) bin (and due to x-section normalisation, also in other M(tt) bins)

ATLAS 2006.09274 vs NNLO predictions using different m^{pole}_t

- Using ABMP16, $\mu_r = \mu_f = H_T/4$
- Reported χ^2 values with PDF uncertainties
- Limited sensitivity to m_t^{pole} due to wide 0 < M(tt̄) < 700 GeV bin: this dataset is not used as standalone, but is still used in our global fits for m_t^{pole} extraction
 M.V. Garzelli, J. Mazzitelli, S-O. Moch. S. Zenaiev NNLO theory vs. exper. data for pp → ti + X hadro

CMS TOP-18-004 vs NNLO predictions with scale variations

- Using ABMP16, $m_t^{\text{pole}} = 172.5 \text{ GeV}, \mu = H_T/4$
- Reported χ^2 values with PDF uncertainties
- Effect of scale variations at NNLO < 2.5% (at low $M(t\bar{t}) < 1\%$) in these large bins.

CMS TOP-20-001 vs NNLO predictions with scale variations

- Using ABMP16, $m_t^{\text{pole}} = 172.5 \text{ GeV}, \mu = H_T/4$
- Reported χ² values with PDF uncertainties
- Effect of scale variations at NNLO < 4% (at low $M(t\bar{t}) < 1\%$)

ATLAS 1908.07305 vs NNLO predictions with scale variations

• Using ABMP16, $m_t^{\text{pole}} = 172.5 \text{ GeV}, \mu = H_T/4$

- Reported χ² values with PDF uncertainties
- Effect of scale variations at NNLO < 4% (at low $M(t\bar{t}) < 1\%$)

ATLAS 2006.09274 vs NNLO predictions with scale variations

- Using ABMP16, $m_t^{\text{pole}} = 172.5 \text{ GeV}, \mu = H_T/4$
- Reported χ^2 values with PDF uncertainties
- Effect of scale variations at NNLO < 4% (at low $M(t\bar{t}) < 1\%$)

Extraction of m_t^{pole}

- χ^2 minimum is determined using parabolic interpolation of 3 points with lowest χ^2 values
- Both experimental and PDF uncertainties included in χ²
- Δm^{pole} uncertainty ~ ± 0.3 GeV quoted in the plots takes into account all uncertainties included in the covariance matrix.
- Scale variations are not included in χ^2 (the uncertainties do not follow a gaussian distribution) but they are done explicitly (offset method) (typically amount to $\pm 0.1 0.2 \text{ GeV}$)

Extraction of m_t^{pole} : summary from Run-2

• Global Run-2 fit: extracted m_t^{pole} values with precision $\pm 0.4 \text{ GeV}$ are consistent with PDG value 172.5 \pm 0.7 GeV

- data uncertainty ~ 0.3 GeV
- PDF uncertainty ~ 0.1 GeV
- NNLO scale uncertainty ~ 0.2 GeV
- Significant dependence on PDFs (~ 0.5 GeV):
 - different m^{pole}_t used in different PDFs
 - PDFs, m^{pole}_t, α_s should be determined simultaneously
- For the fit to the TOP-18-004 dataset, our NNLO results are consistent with the NLO ones published in the experimental paper itself.
 - ~ 2σ difference w.r.t other LHC data (unfolding effect ?)
- Coulomb and soft-gluon resummation effects near the *tt* production threshold are neglected: expected correction ~ O(1 GeV) can be regarded as additional theoretical uncertainty [CMS Coll. EPJ C80 (2020) 658; Kiyo, Kuhn, Moch, Steinhauser, Uwer EPJ C60 (2009) 375; Mäkelä, Hoang, Lipka, Moch 2301.03546]
 having these corrections will make possible m^{pole} extraction with uncertainty ≤ 0.4 GeV

Extraction of *m*^{pole}: summary from Run-1+Run-2

- Global Run-1 + Run-2 fit: extracted m_t^{pole} values with precision ±0.3 GeV are consistent with PDG value 172.5 ± 0.3 GeV
 - data uncertainty ~ 0.2 GeV
 - ▶ PDF uncertainty ~ 0.1 0.2 GeV
 - ► NNLO scale uncertainty ~ 0.1 0.2 GeV

M.V. Garzelli, J. Mazzitelli, S.-O. Moch, S. Zenaiev NNLO theory vs. exper. data for $pp \rightarrow t\bar{t}$ + X hadro

Summary and outlook

- Compared latest LHC tt + X differential measurements with NNLO QCD predictions using the modified MATRIX framework
 - interfaced with PineAPPL to produce interpolation tables for convolution with different PDFs + $\alpha_s(M_Z)$
 - used further in xFitter to benchmark vs experimental data
- Double-differential *M*(*t*t), *y*(*t*t) x-sections are able to distinguish between modern PDF sets by ABMP, CT, MSHT, NNPDF
 - reasonable description by all PDF sets, with best description by ABMP16
 - including these data in a PDF fit will make it possible to further reduce gluon PDF uncertainties at high x
- - extracted m_t^{pole} values with precision $\pm 0.3 \text{ GeV}$ and consistent with PDG value: e.g. using ABMP16 $m_t^{\text{pole}} = 171.7 \pm 0.22(\text{exp}) \pm 0.14(\text{PDF})_{-0.11}^{+0.04}(\mu) \text{ GeV}$
 - missing Coulomb and soft-gluon resummation effects: additional ~ 1 GeV uncertainty
 - additional dependence on PDFs $\sim 0.5 \text{ GeV}$ should be resolved in a simultaneous PDF + $\alpha_s (M_Z) + m_t^{\text{pole}}$ fit
- the considered distributions, especially those of Run 2, have much larger constraining power on m_t than the total cross-sections, where the effects of correlations between $\alpha_s(M_z)$ and m_t are much larger.

BACKUP

Validation of NLO calculations vs JHEP 04 (2017) 071 [CHM]

Validation of LO calculations vs JHEP 04 (2017) 071 [CHM]

Extraction of m_t^{pole}

M.V. Garzelli, J. Mazzitelli, S.-O. Moch, S. Zenaiev NNLO theory vs. exper. data for $pp \rightarrow t\bar{t} + X$ hadro

TOP-18-004 checks

DESY 2018 summer school, L. Materne, bachelor thesis "Differential Top-Pair Production Cross Section with the CMS Detector - Optimization of Measurement Information", Karlsruher Institut für Technologie (KIT), Bachelorarbeit, 2018 [ETP-Bachelor-KA/2018-11]

