

EPS-HEP2023 conference

One inch LaBr3:Ce detectors, with temperature control and improved time resolution, for low energy X-rays spectroscopy

<u>M.Bonesini ¹</u>,², R. Benocci ^{1,3}, R. Bertoni ¹, A. Menegolli⁴, M.C.Prata⁴, M. Rossella ⁴, R. Rossini ⁴, A. Abba ⁵, F. Caponio ⁵

Sezione INFN Milano Bicocca¹ Dipartimento di Fisica G. Occhialini, Universita' di Milano Bicocca² Dipartimento di Scienze dela Terra e ell Ambiente ,Universita'di Milano Bicocca³ Sezione INFN Pavia⁴ Nuclear Instruments srl ⁵

- Compact X-rays detectors, based on crystals with SiPM array readout may find application in many fields:
 - TOF PET imaging
 - Fundamental physics: measure of the Zemach proton radius (FAMU at RIKEN-RAL)
 - Homeland security

Phys. Med. Biol. 53 (2008) R1

- large soft photon yield per MeV
- high density crystals (stopping power)
- soft photon detection in magnetic fields
- compact design
- high granularity
- non-hygroscopic
- affordable

Detectors requirements:

- High photon yield + good timing resolution
- Good energy resolution at low X-rays energy (~ 100 KeV)
- Low cost per channel
- Simple photon readout

Properties of used Crystals/SiPM

Scintillator	Ce:CAAG	PrLuAG	LaBr3:Ce	CeBr3	NAI(TI)
Density (g/cm3)	6.63	6.73	5.08	5.18	3.67
Light yield (photons/MeV)	57000	22000	75000	4700 0	38000
Decay time (ns)	88 (91%) 258 (9%)	20	30	25	250
Peak emission (nm)	520	310	360	370	415
Energy resolution (% @ 662 KeV) [with PMTs typ]	5.2	4.2	2.6	4.0	7
hygroscopicity	no	no	yes	yes	yes
Melting point ©	1850	2043	783	722	924

PDEs for used Hamamatsu SIPM array (Silicon window: suitable for UV detection, as in LaBr₃:Ce)

	size	Vор	Temp coeff	Peak sensitivity	PDE	Spectral range
Hamamatsu S14161-6050-AS	1 inch	41.1 V	34 mV/C	450 nm	50%	270-900 nm
SENSL Array-J-60035-4P	¹ / ₂ inch	29 V	21.5 mV/C	420	50%	200-900 nm
Advansid NUV3S-4×4TD	¹ / ₂ inch	29.3 V	26 mV/C	420 nm	43%	350-900 nm
Hamamatsu S14161-3050-AS	$\frac{1}{2}$ inch	41.1 V	34 mV/C	450 nm	50%	270-900 nm
Hamamatsu S13361-3050-AS	$\frac{1}{2}$ inch	53.8 V	60 mV/C	450 nm	35%	320-900 nm

1" LaBr3:Ce detectors

• Mechanics designed to allow inter-mix of $\frac{1}{2}$ " and 1" detectors

Hamamatsu S14161-6050 SiPM arrays

Electrical and optical characteristics (Typ. Ta=25 °C, Vover=2.7 V, unless otherwise noted)

Parameter		Symbol	S14160/S14161 -3050HS-04, -08	S14160/S14161 -4050HS-06	S14160/S14161 -6050HS-04	unit
Spectral response range		λ	270 to 900 nm			
Peak sensitivity wavelength λp				nm		
Photon detection efficiency at λp*3		PDE		%		
Breakdown voltage		VBR		V		
Recommended operating voltage*4		Vop		V		
Vop variation between Typ.				V		
channels in one product*5	Max.	1 -				
Dark current	Тур.	To	0.6	1.1	2.5	
	Max.		1.8	3.3	7.5	PHA
Crosstalk probability		-		%		
Terminal capacitance	Ct	500	900	2000	pF	
Gain M				-		
Temperature coefficient of recommended reverse voltage		ΔΤVop		mV/°C		

Higher PDE (50% at λp, Vop=VBR + 2.7 V)

- Lower voltage (VBR=38 V typ.) operation
- Small dead space in photosensitive area
- Low afterpulses and crosstalk
- High gain: 10⁶ order
- Excellent time resolution

Immune to effects of magnetic fields

Photon detection efficiency does not include crosstalk and afterpulses.

*3: Photon detection efficiency does not include crosstalk and afterpulses.

*4: Refer to the data attached for each product.

*5: The parameter is for the S14161 series (multichannel type)

Connection of different SiPM in one array : ganging

- □ Several choices depending on requirements: speed, S/N, granularity, ...
- □ Active/passive ganging : better S/N and timing with active ganging
- □ Parallel ganging (p): better S/N, increased capacitance \rightarrow slow rise and log falltime ; need to group SiPM with same V_{brk}
- Series ganging (s): charge/amplitude reduced. Reduced capacitance → fast signal. Needs higher bias voltage (x N)
- Hybrid ganging (h): connected in series , but with decoupling capacitors in between. Series connection for signal and parallel connection for bias. Common bias voltage.

Main problems with SIPM readout

• Gain drift with temperature

P.H. (arbitrary units)

Temperature scan 20-30 C

Bad timing properties, especially for larger SiPM arrays (1")

- Breakdown voltage $\Delta V_{brk} / \Delta T = 34$ mV/deg (MPPC), 25mV/deg (AdvanSiD)
- Gain can be drastically changed when temperature varies, if V_{bias} is not adjusted accordingly.

□ Signal shape with parallel ganging: long falltime and risetime are evident

Same signal with pole zero suppression + overvoltage to compensate for signal decrease, but undershoot is evident.

correction

emperature

Control of SiPM gain drift with temperature

- SiPM gain drift with temperature \rightarrow needs correction of V_{op} .
- temperature monitor by a TMP37 thermistor
- Custom NIM modules (8 channels) based on CAEN A7585D chips
- Interface with PC either FDTI USB-I2C or Arduino
- In the range 10-40 °C the effect is reduced from 60% to 6% for $\frac{1}{2}$ " detectors and from 50% to 9% for 1"detectors

PCB design no 1: parallel ganging

- Charge preserved, but amplitude reduced
- Better S/N
- Increasing capacitance →slow rise and long falltime
- Needs to group SiPM with same V_{brk}
- To avoid problems in mounting PCB has been splitted in two pieces to allow adjustments in mounting, connected by wire bonding

Test results for 1" detectors (// ganging)

- PCB with parallel ganging for SiPM arrays cells
- □ S14161-6050-AS arrays with Silicone window
- □ FWHM energy resolution ~3.0% (~7.8 %) @ Cs137 (Co57) peak
- Risetime ~ 65 ns/falltime ~400 ns (due to high capacitance of array)

PCB design no 2: hybrid ganging

Time constant: Series ~ Hybrid < Parallel Pulse height: Series ~ Hybrid > Parallel

Hybrid ganging vs parallel ganging

PCB design no. 3: 4-1 Solution with Nuclear Instruments

□ The circuit schematics:

- parallel ganging inside one sub-array
- zero pole subtraction +amplification in each sub- array
- add-up of 4 signals
- signal inversion

□ The hardware realization:

More details

Test results (4-1 Nucl Instr circuit)

With NI 4-1 circuit results for energy resolution are similar to the ones obtained with parallel ganging , but timing is much improved.

LaBr:Ce - 1" Nucl Instr PCB Resolution [%] 餘#071 0.14 60#072 d>#074 **##076** 0.12 ##078 #079 R#081 0. #082 **##**#083 #084 0.08 #086 #087 #088 0.06 -#089 0.04 States and the other designs of the left sector of the left sector of the left sector of the left sector of the 0.02 1200 200 400 600 800 1000 Energy [keV]

parallel ganging vs 4-1 NI circuit

1" detectors' timing properties

- □ Due to increased capacitance (from 500 pF to 2000 pF) from increased area, timing properties are worse for 1" crystals as respect to ½" crystals
- Many attempts were done to solve this problem: from using hybrid ganging with overvoltage increase of used SiPM arrays and at last with a 4-1 circuit from Nucl Instr (including amplifier+0-pole suppression)
- □ Typical results are shown below for one typical 1" detector

	Vop(V)	Risetime (ns)	Falltime (ns)	Res (%) @ Co ⁵⁷	Res (%)@Cs ¹³⁷
// ganging	40.82	68.9 ± 7.8	293.3 ± 43.4	7.78	2.96
Hybrid ganging	41.82	16.1 ± 2.4	176.8 ± 29.0	9.58	6.08
0-pole 2 nF	43.02	58.2 ±15.6	123.4±21.7	-	2.99
0-pole 2 nF +amp	40.82	46.9±12.0	170.8 ± 48.7	10.0	3.40
NI circuit 4-1	40.84	28.4±4.5	140.6 ± 21.7	7.89	2.98

Increasing timing implies an energy resolution deterioration. A compromise was found with a 0-pole with increased SiPM overvoltage, to compensate for amplitude reduction. Final solution is the 4-1 circuit developed with Nucl Instr

Test results for another typical detector

	Vop(V)	Risetime (ns)	Falltime (ns)	Res (%) @ Co ⁵⁷	Res (%)@Cs ¹³⁷
// ganging	41.82	64.0±10.6	472.0± 134.5	7.59	2.81
4-1 NI	40.82	30.5 ± 3.8	150.3 ± 19.0	7.53	3.0
0-pole 2 nF	42.82	44.4 ±11.8	128.7±23.1	-	2.99
0-pole3 nF	42.82	53.4±8.4	130.6±19.6	7.37	2.90

- \Box Includes 2nd stage for baseline suppression (~5 mV)
- Reach a temperature ~ 37 C in a climatic chamber at 20 C (simulating Port 1 airconditioning)
- □ Tested over 36 hours
- \Box Cooling with gap-filler + power dissipator (\rightarrow minimal mechanics changes)

Comparison of timing for 1" crystals

M. Bonesini – EPS 23 DESY

Resume of different readout schemes

Effects on linearity and FWHM energy resolution for a typical LaBr3:Ce crystal with different readout circuits. The line connects points for the standard parallel ganging of the SiPM cells of the array. Pole zero circuit + SiPM increased overvoltage (additional 1-1.5 V) reduces falltime, with an increased dark current rate, without compromising too much the FWHM energy resolution. But all this at the expense of a sizeable undershoot

- Hybrid ganging reduces falltime, but at the expense of a worsening of FWHM energy resolution
- NI 4-1 circuit reduces falltime and preserves FWHM energy resolution. The idea is to split a 1" Sipm array in 4 ½" Sipm arrays, to reduce detector's capacitance, apply to each part pole zeo suppression + amplification and then add up results

16 such detectors are presently installed in the FAMU experiment at RAL, to take data in next July. FAMU aims at the measure of the Zemach proton radius.

M. Bonesini – EPS 23 DESY

Conclusions

- FWHM energy resolution of large LaBr3:Ce crystals is deteriorated by hybrid ganging as respect to standard parallel ganging
- A temporary patch may be obtained by adding a pole zero circuit, with a sizeable increase of overvoltage to compensate for signal reduction
- A more robust solution was found with Nuclear Instruments by designing a PCB where the large area SiPM array is split into 4 sub-array, treated individually (pole zero circuit+amplification)
- In this way we have no deterioration of FWHM energy resolution, with a reduction of falltime/risetime of a factor 2-3X
- Many thanks to Mr R. Gaigher, Mr. G. Ceruti of the INFN MIB mechanics workshop and Mr. L. Pastori of Nuclear Instruments for assistance in detectors' mounting and to our FAMU collaborators for many enlighting discussions

THANKS FOR YOUR ATTENTION