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Overview

* Subject of this talk is the MUonE experiment at CERN
* focusing on its prototype Electromagnetic Calorimeter (ECAL)

* more information on MUonE will be presented in:

* David Monk, 25 August 2023 15:10, Horsaal B: The MUonE DAQ: Online Track-finding and
Event Selection in Hardware at 40 MHz.

* Andrea Gurgone , 25 August 2023 16:00, Horsaal M: Theory for the MUonE experiment

* Riccardo Pilato, 25 August 2023 16:15, Horsaal M: The MUonE experiment: mu-e elastic
scattering as a key to understand the muon g-2 puzzle

* Motivation: discrepancy on the theory vs experiments for muon
anomalous magnetic moment

* Principles of measurement

* Apparatus and its current status
* ECAL

* Outlook



Lepton anomalous magnetic moment

* The lepton anomalous magnetic moment (produced by quantum fluctuations), is

. g—2 N e o
defined as a; = — (u = g%S)
* Dirac’s predicts a value of g = 2.

* The electron magnetic anomaly is predicted very well by the Standard Model:

4 = 0.001 159 652 181 61 (23) [SM, (a/m)> order]
¢ 0.001 159 652 181 28 (18) [experiment, 0.16 ppb]

* Because (mu/me )2 ~ 4 x 10%*, the muon anomaly is more sensitive to BSM

effects from heavy particles contributing to quantum loops.
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Muon anomalous magnetic moment

* a, isasuperb probe of the vacuum, i.e., of new physics if it exists.

a,term Value(x 10~11) uncertainty

QED 116,584,718.931 0.104

El-weak 153.6 1.0 HVP-LO 6931(40) ¢ Cannot be calculated perturbatively

HVP 6,345 40 HVP-NLO  -98.3(7) * Driven by LO hadronic vacuum
HVP-NNLO 12.4(1) polarization

HLbL 92 18

Total SM 116,591,810 43

Hadronic Vacuum Polarization leads the Standard
Model uncertainty (cannot be calculated

perturbatively). ] o
Leading order contributions to a,,
Y Y, 1 Y.
QED El-weak Strong
(hadronic) new
smM __ QED EW HVP HLbL _
a, = au + ay + ay + ay, M H +. Tt phys|cs
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aMHVP

* Aclear discrepancy in a,between theory and
experiment (mainly coming from HVP)
* Three possible ways to determine a, HVP:
o Theory (lattice QCD)
o Data driven:
1. Time-like
2. Space-like (MUonE)

In time-like process we usually measure:

Most of the HVP is determined based on
measurements of:
eet>nnt/nntn’/nl

HVP from:
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a,: g — 2new results

DL ik — BNL

* The new measurement of @, at Fermilab is

consistent with earlier experimental values

and is 5.10 away from the old 2020 Theory n FNAL Run-1

!nltlatlvef White Paper value, which is now 0 FNAL Run-2/3

in question..

& - FMNAL Run-1 + Run-2/3

 Complementary and precise new

experiments are needed to understand

discrepancies from SM. —— Exp. Average

20.0 20.5 21.0 21.5 22.0 22.5

The combined (BNL and FNAL) experimental (Exp) average becomes:

a, = 116592059(22) x 10~11(0.19 ppm)



The MUonE experiment: a space like approach to HVP

* The novel approach, proposed by MUonE, bypass the challenging part of data driven calculation, i.e.
integration of hadronic cross section.

* The task is reduced to a measurement of the change (running) of the effective fine structure constant

* inasingle scattering processu+e - U+ e:

xpeak
£ (1072 GeV?) [t] (107% GeV?)
L 055 208 10.5 35 7 ~ 0 0.55 2.98 10.5 35.7 ' o0
a, " = _J dx(1 — x)Adtpgqlt(x)] | | | | ' Tr | | | |
T J, 100 } I N
_— 6 | Xpear = 0.914

tpear = —0.108 GeV?

where Aay,4 is the hadronic =

contribution to the running of ¢ in ~ x

the space-like region (t<0): ’ﬁ?
a(t) = 4

0.001 : ' : '
2.2 0.2 0.4 0.6 0.8 1




U — e scattering process

928, E, = 130.7 GeV 150 GeV muon

— U — e track ambiguity region

Normalization region

N
-88.5Ge
J09.E, / : \

Muon scattering angle (mrad)
o

III‘IIIIIIIIIlI[IIlI

3
do_data/dt 1
doho Vp/dt = 2 2
GI‘/TC |11 — Adgep () — Adtpga (D))
x =093
E,=1395 GeV [} : N
Theory I - e _ob
- Lo Q_'z..ee
To be measured - ¥*
- a
° System boosted; by MUOnE (gL — b T I T 4|0 L1 1 5|0 |
o Will cover entire area of: Electron scattering angle (mrad)
0. < 32mradand 6, <5mrad
. . The relati t th lect tteri les for 150 GeV inci
« The integrand (x < 0.936) , will cover 88% for e relation between the muon a'nd g ectron scattering angles for 150 Ge ’|nC|dent muon
} _ i o ) beam momentum. Blue triangles indicate reference values of the Feynman’s x and electron
incoming n = 160 GeV (with the remaining being energy

extrapolated) 8



MUonE detector setup

Be TE]I'gEt t
1.5cm
u L |

~ 100 cm

1

—>
N

il

The simplicity of the detector will keep the systematics low

I I
| b

M2 u beam >

160 GeV/e

_/’)/ .

Tracking: 3 pairs of Si layers with orthogonal 5¥rips

muon filter

station #1 #2

#3

i

— i lf chamber

ECAL

MUonE final 40 tracking stations are planned in total (each w/ 1.5 cm Be target), but the modular design allows for
flexibility and running in stages. MUonE will be utilizing the M2 line at CERN (160 GeV muons)



Electromagnetic calorimeter (ECAL)

* The ECAL (coming from CMS endcap calorimeters) consist of:
o 5 X5 PbWO0, crystals (individual crystal cross section 2.85 X
2.85 cm?)
o Total cross section 14.25 cm?
o APD readout sensors

e Currently testing a small prototype, depending on results we will fix
the size of the final proposed ECAL

e Purpose of ECAL in MUonE:
o Select elastic events by breaking the u — e track ambiguity; check
on E4.p inferred from track angles. w APDY —E .
o Background estimate and reduction 4
O assess systematic errors

single fiber optic

* PID necessary on regions of ambiguity (tracker can’t distinguish
between pu or e); can be solved by extrapolation of tracker + ECAL +
muon detector.
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ECAL expected energy resolution

 MUonE ECAL uses same APDs type as CMS (but different
size ; 10mm x 10 mm).

o affects the observed signal, i.e., the energy
resolution.

o C=270 pF -> expect 9 pe/MeV

* rms noise = 4.00 ADC counts (single crystal).

* For 150 GeV electrons, 9 pe/MeV, and an APD gain of 50
(single crystal):
150,000 X 9 X 50 e = 6.75 10%e ~ 28,723 ADC counts

* The system noise should be dominated by the MGPA.

o This will determine the ability to identify beam
muons whose signal value is only ~700 MeV at
150 GeV

o estimates shown many times previously suggest an
energy resolution of 5-7% at 700 MeV

CMS: MGPA specifications

Parameter Barrel End-cap
Full-scale signal 60 pC 16pC

Noise level 10,000 e, 1.6 C 3,500 e, 0.56 fC
Input capacitance ~ 200 pF ~ 50 pF

Output signals Differential 1.8V, +/- 0.45 V around
(to match ADC) 1.25 V common mode voltage
Gain ranges 1.6,12
Gain tolerance +/- 10%
(each range)
Linearity +/- 0.1% full-scale
(each range)
Pulse shaping 40 ns CR-RC
Pulse shape <+/- 1%
matching
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MUonE test beam runs 2023

e Atestin 2018 run with muons in the North Area at CERN, running parasitically downstream of | CERN T9 |
the COMPASS spectrometer shown satisfactory agreement and demonstrated that measuring [ O TS "
the angles of the outgoing particles, a clean sample of elastic interaction could be identified.

« calibration beam tests of the current prototype: h, j

Q June 2023: o L TR e i ! N L~

{ " ot i [ : " 1B /]

l. ECAL test with electron energies ranging from 20-150 GeV, H2 beam line at ' ‘ ‘ Ny S
CERN.

. ECAL test with electron energies ranging from 1-10 GeV, T9 beam line at CERN. W

CERN H2

T e —— =

Back view of ECAL




June-2023 data: Preliminary analysis

150 GeV electron (2500k events )

* APD voltages adjusted during June 2023 test
beam to achieve individual gain match of
10% within the E,,,.0n

e 27600 ADC counts = 150 GeV

* Set up allows us to cover the necessary
energy spectrum.

Back view of ECAL during test beam
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June-2023 data: Preliminary analysis

FEB channel 5; 1 GeV electron
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total energy distributions for single crystals in which the energy of a single crystal, i is at least E; > 0.70E,;
o 1GeV electron peaks ~184 ADC channels

o 150 GeV electron peaks ~27600 ADC channels

observed width is dominated by the beam momentum spread

Simulation —

E(Etot)

tot

30000

= {0.9% (1GeV), 0.32%(150GeV)}
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August/September 2023 test beam

* A Pilot Run is planned for the end of August beginning of September, this
time with 2-3 fully instrumented stations.

o Full integration of ECAL and tracker DAQ

o Test a simplified on-line selection for data reduction in real time
o Background study with final detector configuration

o Test of global alignment

o Study of beam energy calibration

o Measurement of the leptonic running of a

Results will be used to prepare the full experiment proposal. Submission to the SPSC

planned for 2024. "



Conclusion and future

* The main source of error for anomalous magnetic moment of the

muon comes from aﬁ’w

* MUonE proposes a novel approach (space-like) independent from
previous measurements.

* The addition of the ECAL can shine light to regions of ambiguity
(between u — e), background estimate and reduction.

 The first preliminary results on ECAL data are helping us to
understand its capabilities and increase its efficiency for
upcoming new test beams

* A new test beam for the MUonE experiment is scheduled for
August/September 2023 at CERN (2-3 tracking stations + ECAL).



Thank you!
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June-2023 data: Preliminary analysis

Waveform of a single event and a single channel for a

1 GeV electron beam.

DAQ currently separates data into three regions;

1. Noise (before signal)
2. Signal
3. Noise (after signal)
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June-2023 data: Preliminary analysis

Due to the level of precision we need to achieve,
noise reduction is under development

We can use correlation coefficient (C) between crystals
to reduce their noise;

1 1
ﬁ21'7=51 kili - ﬁzz?; ki 2321 li

J__J
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J —
Crp =

ok ... FEB channel amp
ol ... FEB channel amp
ol ... time bin

oj ... event number

The average for N events:

1 2 3 4 5 = 1 N j
2 |1 |30 |31 | 32 Ck,l = — Ck i
6 |7 | 8 | 9 | 10 N j=1 "
4 3 27 28 29

11 12 13 14 15

7 6 6 25 26
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o |° | & |% |2 | Backview of ECAL
212|222 during test beam
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1 GeV electrons; FEB pairs Cy
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FEB 2 has a bigger set of high correlated crystals, i.e. crystals

with Cy ; > 0.80.
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June-2023 data: Preliminary analysis

Let k be a channel that’s highly correlated with

a set of different crystals, [g.;, such that:
Ck,,,, = 0.80

FEB channel 23 (no reduction)
o = 8.96 ADC counts

FEB ch 23 (noise reduced from [g,;):
o = 3.5 ADC counts

Pros:
0 0,3 reduced by 61%

Cons:

o Only works with highly correlated crystal
pairs

Several studies techniques are being tested to
dee;l with the noise (FFT, waveform averaging,
etc).
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Noise distribution
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June-2023 data: Preliminary analysis

* Amplitude fluctuation sigma, 7;,,ise, Can
happen during our tests due to,
electronics, temperature, incident particle
type, etc.

* Important to watch for consistency over
different test runs.

* 0 is relatively stable over different runs:
 FEB 1 average (excl. ch 1) =3.98 ADCs
* FEB 2 average (excl. ch 30, 32) =4.63 ADCs
o 1GeV = 184 ADC
o 54 MelV/ =1ADC

5 [ADCs]
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June-2023 data: Preliminary analysis

*Another issue with our crystals is high frequency noise
|t converts time domain to frequency domain.
|t can be used as a filtering algorithm to reduce high frequency noise.

Crystal 13 Frequency Domain Crystal 13: time Domain
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June-2023 data: Preliminary analysis

10

0.8 1

Applying a low pass filter on 9MHz frequencies reduces noise by 37.5%
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June-2023 data: Preliminary analysis

150 GeV electron

* Log weighted centroid: Ln Centroid
2 ] Wf —=7.2
¥ Y21 R4d 4} g |
Pol — ) > |
2. Wi
, 4.32 107
l 7
w; = max O,Wo+ln(E )¢ f
tot
— 1.44
10
~1.44
o0, =113 cm
* g, =122cm 430
’
During the 2023 test beam in June we scan every single crystal, _7__% > _4i32 - i44 1 i44 ; :|32 .
in between crystals and corners of the whole ECAL with energies ' ' ' ' ' x[cm]

ranges of {1,2,4,8,25,50,75,100,125,150 GeV} The coordinate is set (0,0) at the center of FEB channel 5
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