Track reconstruction of charged particles using a 4D quantum algorithm

Arianna Crippa^{1,2}, Lena Funcke³, Tobias Hartung⁴, Beate Heinemann^{1,5}, Karl Jansen¹, Annabel Kropf^{1,5}, Stefan Kühn¹, Federico Meloni¹, **David Spataro**^{1,5}, Cenk Tüysüz^{1,2}, Yee Chinn Yap¹

¹ Deutsches Elektronen Synchrotron DESY

² Humboldt-Universität zu Berlin

³ Universität Bonn

HELMHOLTZ

⁴ Northeastern University, London

⁵ Albert-Ludwigs-Universität Freiburg

EPS-HEP 2023, Hamburg 25/8/2023

Track reconstruction

• Tracking can be challenging

 \rightarrow good detectors and algorithms needed

- Future collider facilities plan to use detectors with timing capability
 - \rightarrow 4D algorithms
- This talk:
 - 4D quantum algorithm for pattern recognition of charged particle tracks
 - Results for a Muon Collider detector as an example

Source: https://home.cern/science/accelerators/muon-collider

• **Doublets** as elementary patterns

- **Doublets** as elementary patterns
- Triplets as "building blocks"

- **Doublets** as elementary patterns
- Triplets as "building blocks"
- **Relations** of triplets as key feature

- **Doublets** as elementary patterns
- Triplets as "building blocks"
- **Relations** of triplets as key feature

Goal:

Identify triplets stemming from a single particle and combine them to tracks

QUBO Quadratic Unconstrained Binary Optimisation

$\hat{H} = \sum_{i}^{N} \sum_{j < i} b_{ij} T_i T_j + \sum_{i=1}^{N} a_i T_i \qquad (\text{QUBO})$

- **T**_i ∈ {0, 1}
- **b**_{ij}: interaction
- **a**_i : quality

Coefficients can be set by using **spatial** and/or **temporal** information of the triplets

QUBO Quadratic Unconstrained Binary Optimisation

$$\hat{H} = \sum_{i}^{N} \sum_{j < i} b_{ij} T_i T_j + \sum_{i=1}^{N} a_i T_i \qquad (\text{QUBO})$$

Minimise Hamiltonian cost function:

- Ground state \rightarrow best set of triplets
- $\mathbf{v}_{\text{binary}}$: $[T_1, T_2, T_3, \dots, T_N] \rightarrow [0, 1, 1, \dots, 0]$ as result

Computation:

- Matrix diagonalisation (analytic solution)
- Hybrid quantum-classical algorithm (VQE)

- "<u>Quantum algorithms for charged particle track reconstruction in the LUXE experiment</u>" (Yee Chinn Yap, Talk)
- "<u>Assessing the potential of quantum annealers for track reconstruction at LUXE</u>" (Annabel Kropf, Poster)
- See also: <u>arxiv:2304.01690</u>

- Matrix diagonalisation (analytic solution)
- Hybrid quantum-classical algorithm

VQE - Variational Quantum Eigensolver

• Possibly only O(Poly(n)) operations with a quantum computer

Sub-QUBOs

Source: arxiv:2304.01690

Timing information used for particle tracking

- Purpose: Reduce ambiguity and complexity of reconstructing trajectories
- Planned Phase-2 upgrade ATLAS(HGTD)/CMS(MIP):

Timing layers in forward direction to reduce pileup background

- Muon Collider detector as an example of a next generation detector with timing layers everywhere
- VXD Tracker: σ_{t} = 30ps, Inner/Outer Tracker: σ_{t} = 60ps

• Muon Collider detector as an example of a next

generation detector with timing layers everywhere

• VXD Tracker: σ_{t} = 30ps, Inner/Outer Tracker: σ_{t} = 60ps

- Muon Collider detector as an example of a next generation detector with timing layers everywhere
- VXD Tracker: σ_{t} = 30ps, Inner/Outer Tracker: σ_{t} = 60ps

Beam muon decays induce secondary particle showers that reach the detector

(Beam-Induced-Background)

Time information as a crucial component to suppress BIB particles

4D tracking with a quantum algorithm:

Time information is directly used for calculating the QUBO parameters

4D QUBO

$$\hat{H} = \sum_{i}^{N} \sum_{j < i} b_{ij} T_i T_j$$
 quality values
a are set to 0

Interaction b_{ij}:

- Curvature of triplets
- Scattering, alignment of hits in the r-z plane
- Time compatibility of hits of the interacting triplets
- \rightarrow 4D modeling of triplet interactions

Reconstruct a single muon track within a large BIB

Setup

- Single muon events overlaid with BIB
- 0.5 GeV < p_T < 5.0 GeV
- θ = 90°
- Only hits in a small volume around track are considered

Goal: Reconstruct a single muon track within a large BIB

Pre-selection

• **Doublets:** $\Delta \theta$ and $\Delta \phi$

 $\begin{array}{ll} h_1: (x_1, y_1, z_1) & \Delta \phi = \phi(h_2) - \phi(h_1) \\ h_2: (x_2, y_2, z_2) & \Delta \theta = \theta(h_2) - \theta(h_1) \\ r = \operatorname{sqrt}(x^2 + y^2) \end{array}$

DESY.

Pre-selection

• **Doublets:** $\Delta \theta$ and $\Delta \phi$

 $\begin{array}{ll} h_1: (x_1, y_1, z_1) & \Delta \phi = \phi(h_2) - \phi(h_1) \\ h_2: (x_2, y_2, z_2) & \Delta \theta = \theta(h_2) - \theta(h_1) \\ r = \operatorname{sqrt}(x^2 + y^2) \end{array}$

Pre-selection

DESY.

- **Doublets:** $\Delta \theta$ and $\Delta \phi$
- **Triplets:** transverse impact parameter **d**₀

Page 23

Results

Optimisation

• Matrix diagonalisation, sub-QUBO size =18

Criteria

- Track selected if \geq 6 hits
- Matched if majority of hits stem from signal, else fake

Fake rate

- Fake tracks in search window
- O(1) fake track per event

Results

- Increasing the sub-QUBO size leads to a higher efficiency
- VQE requires optimisation to match the matrix diagonalisation (analytical) result

 A 4D quantum tracking approach using a QUBO formulation was presented → QUBO parameters consist of a combination of spatial and temporal information of the detector hits

• Adding time information to the QUBO parameters b_{ij} improves the track reconstruction efficiency, especially at low p_T

• Example test application shown for a future high-energy muon collider

Thank You!

Appendix: QUBO parameter settings

Trivial

- -1 if connection possible compatible curvature: c=1 contrary curvature: c=2
- $f(q/p_T): 0.5 \cdot (c min([pT_{triplet 1} pT_{triplet 2}]) / max([pT_{triplet 1} pT_{triplet 2}])) \rightarrow [0, 1]$
- $max(\Delta\theta / 0.01) \rightarrow [0, 1]$
- average of both is spatial value

Temporal

• $min(\sigma(t_{hits}) / 250 \text{ [ps] }, 1) \rightarrow \text{[0, 1]}$

Connections are rescaled to be inside **[-1.0, -0.9]**

HELMHOLTZ

Appendix: Signal only - doublet pre-selection

Appendix: Signal only - triplet pre-selection

Appendix: Preselection values

VXD:	Δφ = 0.05	$\Delta \theta = 0.01$	d0 = 15mm
ITracker:	Δφ = 0.2	Δθ = 0.01	d0 = 50mm
OTracker:	Δφ = 0.25	Δθ = 0.005	d0 = 50mm

Appendix: Triplet statistics

```
N<sub>events</sub> = 538,
```

```
\mathrm{N_{triplets}} = 15087781 \rightarrow 28044 / event
```

N _{triplets, signal}	= 5048	\rightarrow 9	/ event
N _{triplets, majority signal}	= 40137	$\rightarrow 75$	/ event
N _{triplets, majority background}	= 278561	→ 518	/ event
N _{background}	= 14764025	$\rightarrow 27442$	/ event

HELMHOLTZ