High-rate electron detectors to study Compton scattering in non-perturbative QED

<u>Antonios Athanassiadis</u>¹², John Hallford¹³, Louis Helary¹, Luke Hendriks¹³, Ruth Magdalena Jacobs¹, Jenny List¹, Gudrid Moortgat-Pick², Evan Ranken¹, Stefan Schmitt¹, Matthew Wing¹³

EPS-HEP 2023 Conference, 24.08.2023

¹ Deutsches Elektronen-Synchrotron (DESY)

² Universität Hamburg

³ University College London (UCL)

CLUSTER OF EXCELLEN RSCHUNG | DER LEHRE | DER BILDUNG QUANTUM UNIVERSE DESY.

• New experiment at DESY Hamburg to probe non-perturbative **strong-field** QED regime (SFQED)

High intensity laser

16.5 GeV electrons

• New experiment at DESY Hamburg to probe non-perturbative **strong-field** QED regime (SFQED)

Non-linear Compton Scattering $e^- + n\gamma_L \rightarrow e^- + \gamma_C$

• New experiment at DESY Hamburg to probe non-perturbative **strong-field** QED regime (SFQED)

• New experiment at DESY Hamburg to probe non-perturbative **strong-field** QED regime (SFQED)

Goal of LUXE

 Measure particle interactions in strong field QED regime for different laser intensity values ξ

$$\xi = \frac{m_e}{\omega_L} \sqrt{I/I_{\rm cr}}$$

Goal of LUXE

 Measure particle interactions in strong field QED regime for different laser intensity values ξ

$$\xi = \frac{m_e}{\omega_L} \sqrt{I/I_{\rm cr}}$$

- Example measurement: compton electron energy spectra
 - Small shift in Compton edge
 - > High number of electrons expected

Challenges of LUXE

• Wide range of technologies that are adapted specifically for the rates and particle types

Challenges of LUXE

- Wide range of technologies that are adapted specifically for the rates and particle types
- LUXE foresees two complementary detector technologies per location
 - Cross-calibration possible
 - Low systematic uncertainties

• Behind dipole: Electrons will be fanned out with respect to their energy

- Behind dipole: Electrons will be fanned out with respect to their energy
- Scintillator screen and camera with ΔE/E < 1% and Δx ~ 500µm

 Light yield proportional to number of electrons

- Behind dipole: Electrons will be fanned out with respect to their energy
- Scintillator screen and camera with ΔE/E < 1% and Δx ~ 500µm
 - Light yield proportional to number of electrons
- Segmented Cherenkov detector with $\Delta E/E \sim 2\%$ and $\Delta x \sim 3mm$
 - Stainless-steel tubes aligned in a grid perpendicular to beam axis

Screen Properties

- Gadolinium Oxysulfide doped with Terbium
- High number of emitted photons (543 nm)
- Linear behaviour
- Decay constant ~ 600 µs
- Radiation-hard (up to 100 MGy)

Screen Properties

- Gadolinium Oxysulfide doped with Terbium
- High number of emitted photons (543 nm)
- Linear behaviour
- Decay constant ~ 600 µs
- Radiation-hard (up to 100 MGy)

Camera Properties

- Basler cameras with 2K and 4K resolution
- Monochromatic CMOS sensors
- Optical filters to accept light of 543 nm
- 70% quantum efficiency

DESY.

Reconstruction algorithm

- If electron passes screen
 - · Light emitted and recorded by camera
 - Position on screen in relation to electron energy

Reconstruction algorithm

- If electron passes screen
 - · Light emitted and recorded by camera
 - Position on screen in relation to electron energy
- Camera data contains data about CMOS count/gray value per pixel
- Within area of interest > Obtain mean and standard deviation from a gaussian fit

Reconstruction algorithm - Simulation

• Take peak of edge, compare to theoretical expectation

Reconstruction algorithm - Simulation

- Take peak of edge, compare to theoretical expectation
- Generally good results, could be better in the low- ξ and high- ξ
- Only for $\xi < 0.5$ reconstructed edge points lie outside $\Delta \xi = 5\%$

Basic idea

- · Reflective, air filled straws aligned in a grid
- Cherenkov light produced by electrons is reflected towards Silicon-Photomultipliers (SiPMs)

Basic idea

- · Reflective, air filled straws aligned in a grid
- Cherenkov light produced by electrons is reflected towards Silicon-Photomultipliers (SiPMs)
- Many parameters have to be optimized:
 - Straw dimensions, material, reflectivity and angle $\boldsymbol{\alpha}$
 - · SiPM dimensions and characteristics

Simulation studies

- GEANT4 used to simulate electron interactions, detector design and materials
- Cherenkov light and optical properties simulated
- Straw parameters e.g. dimensions, reflectivity or the angle are considered

- Optical effects can be studied in detail
- Here: For an angle of 20° ➤ Higher probability of photons reaching the end of the tube

Reconstruction algorithm

• Single row of straws

Reconstruction algorithm

- Single row of straws
- Compton energy reconstruction via finite-impulse-response-filter method

Convolution between

• Compton edge position
$$R_d(i) = \sum_{k=-N}^{K=N} h_d(k) \cdot g_d(i-k)$$

Gaussian filter

$$h_d(k) = -k \exp{-\frac{k^2}{2\sigma^2}}$$

L AT

Reconstruction algorithm

- Single row of straws
- Peak structure in Compton energy fit
- Electron detection efficiency drops
 periodically

Reconstruction algorithm

- Single row of straws
- Peak structure in Compton energy fit
- Electron detection efficiency drops
 periodically

Second row of straws

Reconstruction algorithm

- Single row of straws
- Peak structure in Compton energy fit
- Electron detection efficiency drops
 periodically
- Second row of straws recovers this effect partially

• Straws with 0.1 mm thickness

- Straws with 0.1 mm thickness
- SiPMs from Hamamatsu and Onsemi

- Straws with 0.1 mm thickness
- SiPMs from Hamamatsu and Onsemi
- Screens with different light yield or resolution

- Straws with 0.1 mm thickness
- SiPMs from Hamamatsu and Onsemi
- Screens with different light yield or resolution
- Straws and screen movable (left-right, tilting)

Future plans

- Evaluation of recent testbeam measurements
 - ➤ At <u>ARES</u> facility at DESY
 - > 1 pC 100 pC electron beam with 150 MeV

Future plans

- Evaluation of recent testbeam measurements
 - ➤ At <u>ARES</u> facility at DESY
 - > 1 pC 100 pC electron beam with 150 MeV
- Extended simulation studies

Future plans

- Evaluation of recent testbeam measurements
 - ➤ At <u>ARES</u> facility at DESY
 - 1 pC 100 pC electron beam with 150 MeV
- Extended simulation studies
- Data acquisition for camera readout and analysis
- Construction of a 16/32 channel prototype

Conclusion

- LUXE demands many requirements on the detectors in order to measure the effects of strong-field QED.
- Due to the redundant detector setups, high resolution measurements will be achieved.
- The concept of the electron detection system is a suitable system.
- Simulation, testbeam and laboratory studies will pave the way for the high-rate electron detector.

Thank you

For more details, have a look at other contributions about LUXE at EPS-HEP:	
Detector Challenges at LUXE	Quantum algorithms for tracking
by Oleksandr Borysov	by Yee Chinn Yap
<u>New physics at LUXE</u>	Quantum annealers for tracking
by Nicolo Trevisani	by Annabel Kropf
LUXE: a new experiment to study non-perturbative QED by Evan Altair Ranken	