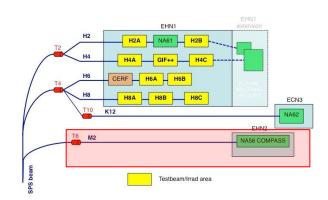
Online Track-finding and Event Selection in Hardware at 40 MHz

David Monk

Vone Northwestern University

This material is based upon work supported by the National Science Foundation under Grant No. 2111556

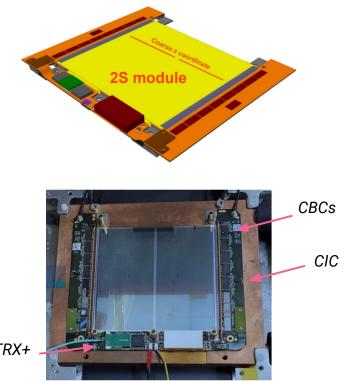

Outline

- Introduction
- MUonE DAQ System
 - FE Hardware
 - BE Hardware
 - Online monitoring
- Event Selection
 - Example signal elastic scatter of muon and atomic electron
 - Occupancy
 - Track Finding
 - Extensions to the algorithm
- Conclusions

Introduction

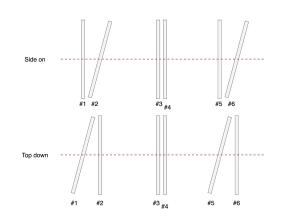
For a detailed introduction to the MUonE experiment, please see the talk from <u>Riccardo Pilato</u>

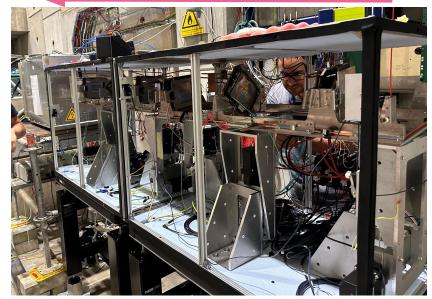
- The MUonE experiment in collaboration with CMS has conducted several beam tests in the last two years to develop and test its DAQ system - including one as I speak
- Current system has been shown to perform continuous readout at 40 MHz with little truncation
 - \circ Over 100TB of data recorded
 - Over 500 billion tracker hits
- As system scales in size, so much the approach to recording data that is relevant to the physics goals of the experiment
- CERN M2 beamline
 - Secondary beam generated from SPS (T6 target)
 - Up to 2x10⁸ muons per spill, 50 MHz asynchronous rate
 - 160 GeV muons or 40 GeV electrons (lower intensity)



MUonE DAQ System

MUonE DAQ System I - FE Hardware

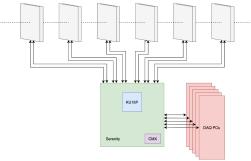

- 2S modules have been developed for the <u>CMS Phase-II Tracker upgrade</u>, composed of 2 layers of silicon strip sensors, whereby hits in the two layers are correlated to form a "stub"
- 10cm x 10cm active area, composed of 2 columns of 1016, 90 µm pitch, strips per layer
- Makes use of CERN-developed lpGBT+VTRx for optical readout at 5 Gbps
- Operates at "LHC" clock rate of 40 MHz
 - Asynchronous to M2 beam
 - Intended for CMS L1 trigger

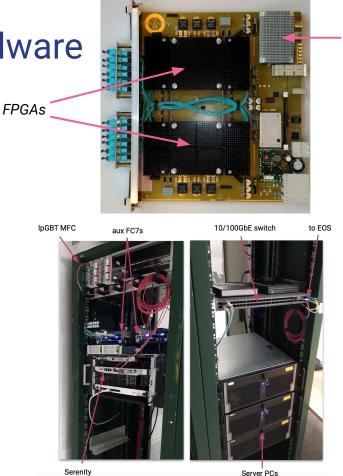


Beam direction

MUonE DAQ System II -Experimental Setup

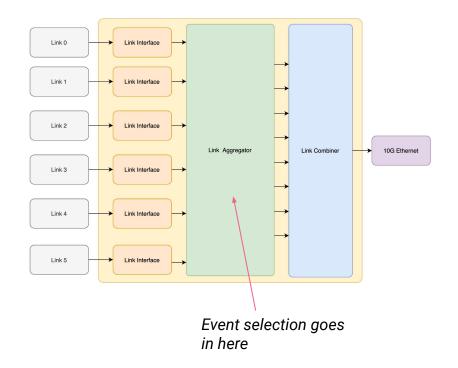
- Six modules placed within a "station"
 - Manages power, cooling, alignment and optics
 - Two stations installed on the beamline
- Modules arranged in pairs: x,y | u,v | x,y
- 2 cm carbon target placed in front of second station



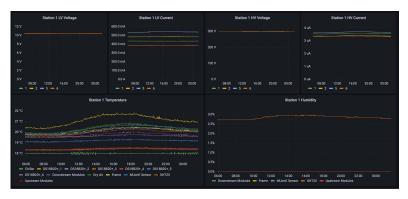

Housing for u,v modules

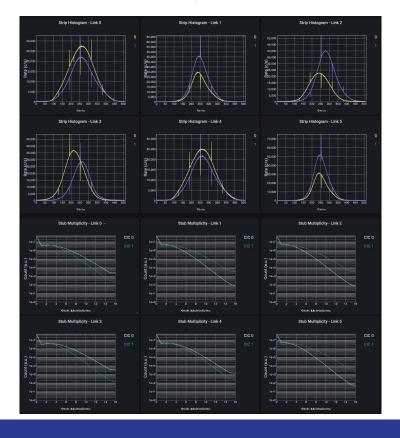
MUonE DAQ System II - BE Hardware

- Ingestion of data and configuration of modules is handled by the Serenity card
 - Prototype ATCA-class processing card developed for CMS Phase-II 0 upgrade
 - Generic, composed of up to 2 AMD-Xilinx Ultrascale+ FPGAs and 144 0 optical transceivers for I/O
 - Also includes a System on Module (SoM) for management (Intel 0 i5-based CoM-Express)
- Data transferred onward via 10 Gbps ethernet links to commercial PCs
 - PCs consolidate and chunk the data, before transfer to EOS for 0 long-term storage and analysis
 - Direct link to EOS from experimental hall at 2 x 100 Gbps 0
 - No local huffering data streamed live 0



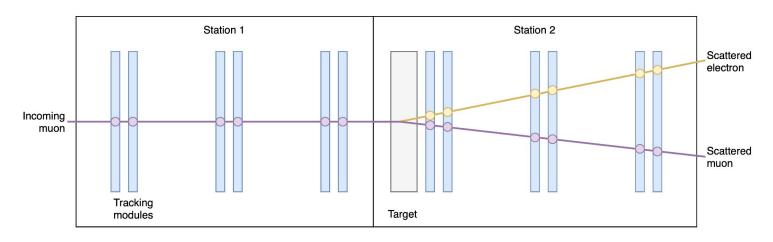
SoM


MUonE DAQ System III - BE Processing Firmware


- Makes use of EMP framework developed for CMS Phase-II upgrade
 - Abstracts infrastructure (links, clocks) away from algorithm
- Link interface firmware is common to CMS Phase-II tracker upgrade, rest of firmware custom to MUonE
- Stubs are collected by their clock ID across all modules, each collection sent sequentially to ethernet link
- Each station is handled independently and synchronously

MUonE DAQ System IV - Online Monitoring

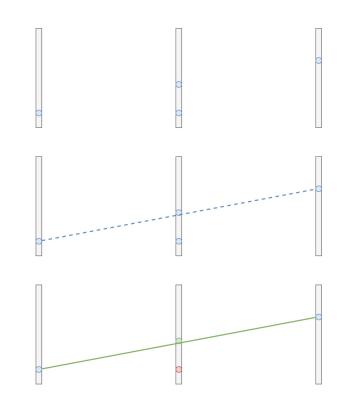
- Possibility to make use of both FPGA and SoM on BE processing card for monitoring of DAQ in real-time
- Two histogramming firmware blocks integrated into design
 - Stub Address: Provides real-time beam profile, generated from every stub sent from FE modules
 - **Packet size**: number of stubs histogrammed for every packet received. Useful for estimating truncation in FE modules
- Histograms are readout to the SoM via IPBus, then exposed as a web page to be scraped by Prometheus instance and plotted in Grafana
- Temperature, humidity sensors also connected as well as CAEN power supply



Event Selection

Example signal - elastic scatter of muon and atomic electron

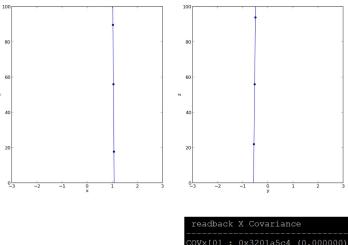
- Physics motivation for MUonE is to measure angular distribution of elastic muon scatters against atomic electrons in a fixed target
- Signal is two tracks originating from a common vertex within the target, matched to single incoming track
- Tracks can be generated by combining multiple tracker hits; no magnetic field means tracks are straight lines
- PID of electron vs muon to be achieved with downstream ECAL (talk by Adrian Gutierrez)
- Primary backgrounds are non-interacting muons one or more tracks without a common vertex close to station



Occupancy cuts

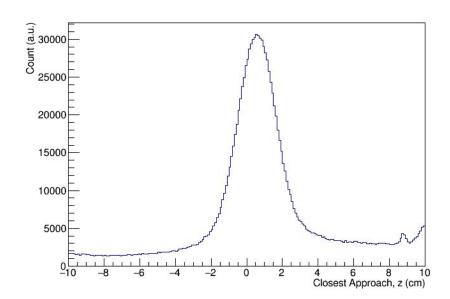
- Most simple method for selecting candidate events is a cut on module occupancy
- For a two-track scattering event, each upstream module must have one hit and each downstream module must record at least two stubs in the same clock cycle
- Allow more than two stubs per module in downstream station to account for noise and other event topologies that may be of interest
- Cut in firmware trivial, per module occupancy available from buffer FIFOs in current DAQ system
- For data recorded in November 2022, occupancy cuts reduced the rate from 40 MHz to **5 MHz**

Track-finding I - Candidate Events


- Tracking in hardware a complex task, requires both resources and time
- Combinations of hits that could form a track increases exponentially, necessary to form candidate sets of stubs within event
- x and y axes can be considered independently for initial selection
 - Tracks can be formed from 3 hits: 1 hit at start of station, 1 hit at end, 1 "virtual" hit generated from combination of u,v planes
 - Candidate sets of hits created by propagating straight line made from outer hits to the u,v plane, then iteratively searched for compatible hits
 - Acceptance window can be programmatically tuned to maximise efficiency at a given occupancy
- Further 10% reduction in rate (4.5 MHz)

Track-finding II - Fitting

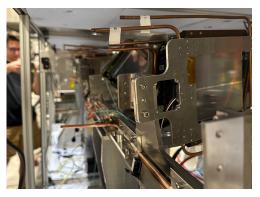
- Candidate sets of events sent to fitting stage
- Least Squares fit implemented using HLS
 - Tool capable of translating C++ code into VHDL, highly effective for rapid prototyping and complex operations (e.g. matrix inversion)
- Provides track parameters and associated errors
- Fitting performed independently in each axes, then 2D tracks are combined to form a 3D track
 - 2D tracks which share u,v hits are merged
- High latency at ~2us per candidate set, necessary to buffer event data for this time, intention is to have multiple fitters in the FPGA to pipeline stage.



readback	X Covariance
COVx[0] : COVx[1] : COVx[2] : COVx[3] :	0x3201a5c4 (0.000000) 0xb4dcae0f (-0.000000) 0xb4dcae0d (-0.000000) 0x37f27176 (0.000029)
readback	Y Covariance
COVy[0] : COVy[1] : COVy[2] : COVy[3] :	0x3201c60a (0.000000) 0xb4e8594d (-0.000000) 0xb4e8594e (-0.000000) 0x3803506f (0.000031)
readback	x fit parameters
Px[0] : 0x Px[1] : 0x	ba0d3680 (-0.000539) 3f895515 (1.072909)
readback y fit parameters	
2 4 3	3a58fda0 (0.000828) bf130e67 (-0.574439)

Extensions to the Algorithm

- Once tracking information is available online, further steps can be developed
- Vertexing: search for two tracks with intersection
 - Should offer ~6x reduction in data rate (800 kHz)
- **PID**: opportunity to use ML, in particular online
 - <u>hls4ml</u> project provides framework to translate trained networks into VHDL for use on an FPGA for inference


Current Tests

2023 Test Run

- Multi-week test beam, 12+ modules installed
 - First test beam at this scale for CMS prototype hardware
- Mainline DAQ system will only use occupancy cuts to manage readout bandwidth, will be sufficient with 4x10 Gbps ethernet links as output
- Track-finding will also be implemented on the FPGA, using data duplicated from the mainline DAQ, for comparison with offline reconstruction

Conclusion

- MUonE and CMS have sustained the 40 MHz readout of Phase-II Tracker modules in several joint test beams
 - Many TB of stub data live-streamed to EOS
- With higher beam intensity and larger scale detectors, readout bandwidth rapidly becomes constrained
- This challenge can be addressed through the use of modern FPGA technology, which provides the platform for real-time even selection based on complex topologies without external triggers
- The DAQ framework presented makes widespread use of common technologies, allowing for flexibility and use beyond the MUonE experiment

Backup

Applications to other Beamlines - UA9

- Many challenges and solutions presented are designed to be generic and can applied to other projects
 - Use of common hardware, firmware and software ensure that effort is shared amongst large collaboration across multiple experiments and larger commercial ventures (Docker, Kubernetes, Prometheus, Grafana)
- UA9 DAQ now extremely outdated, opportunity to update with modern hardware and software
- Once data is in the FPGA, many blocks can be reused