
Higgs precision physics in electron-proton scattering at CERN

on behalf of the LHeC & FCC-eh Study Group

Hamburg, August 24th, 2023 EPS-HEPP 2023

The Future of the Large Hadron Collider

A Super-Accelerator with Multiple Possible Lives

- Introduction:
 - Foreword
 - New Theory Paradigms at the LHC
 - Commissioning and the Initial Operation of the LHC
- The First Decade of the LHC:
 - The Higgs Boson Discovery
 - Physics Results
 - Heavy-Ion Physics at the LHC
- High Luminosity LHC:

Accelerator Challenges:

- HL-LHC Configuration and Operational Challenges
- Large-Aperture High-Field Nb3Sn Quadrupole Magnets for HiLumi
- Radio Frequency systems
- Beam Collimation, Dump and Injection Systems
- Machine Protection and Cold Powering

Physics with HL-LHC:

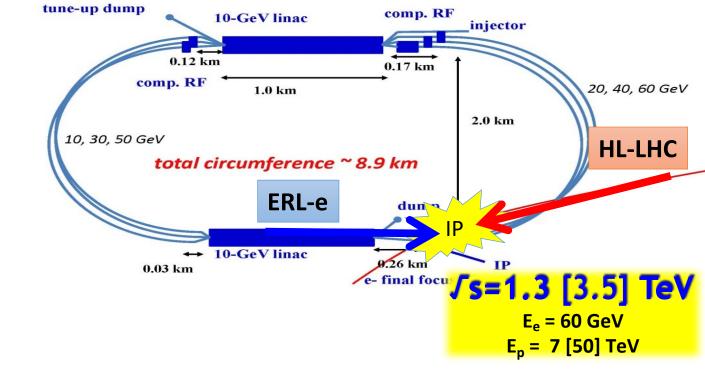
- Overview of the ATLAS HL-LHC Upgrade Programme
- The CMS HL-LHC Phase II Upgrade Program: Overview and Selected Highlights
- LHCb Upgrades for the High-Luminosity Heavy-Flavour Programme
- ALICE Upgrades for the high-Luminosity Heavy-Ion Programme
- Higgs Physics at HL-LHC
- High Luminosity LHC: Prospects for New Physics
- Precision SM Physics
- High Luminosity Forward Physics
- Further Experiments and Facility Concepts:
- The FASER Experiment
- The SND@LHC Experiment
- Gamma Factory
- Future Prospects:
 - Electron-Hadron Scattering:
- An Energy Recovery Linac for the LHC
- Electron-Hadron Scattering Resolving Parton Dynamics
- Higgs and Beyond the Standard Model Physics
- A New Experiment for the LHC

The High-Energy LHC:

- High Energy LHC Machine Options in the LHC Tunnel
- Physics at Higher Energy at the Large Hadron Collider
- HE-LHC Operational Challenges
- Vacuum Challenges at the Beam Energy Frontier
- LHC in the FCC Era:
- The LHC as FCC Injector
- About the Editors

Contributions@EPS2023:

- 328. An Accelerator R&D Roadmap for Energy **Recovery Linacs (ERLs)** Jorgen D'Hondt ,23/08/2023, 17:55
- 351. bERLinPro@SEALab: A contribution to European Accelerator Roadmap for ERLs Axel Neumann, 23/08/2023, 18:15
- 697. Precision QCD at the LHeC and FCC-h Francesco Giuli, 25/08/2023, 09:15
- 699. The general-purpose LHeC and FCC-eh high-energy precision programme: Top and EW measurements, Daniel Britzger, 25/08/2023, 08:30
- 700. Higgs precision physics in electron-proton scattering at CERN Uta Klein, 24/08/2023, 10:18
- 701. Searches for new physics at the LHeC and FCC-eh Monica D'Onofrio, 22/08/2023, 09:50
- 702. A detector for top-energy DIS Adnan Kilic, 25/08/2023, 08:50

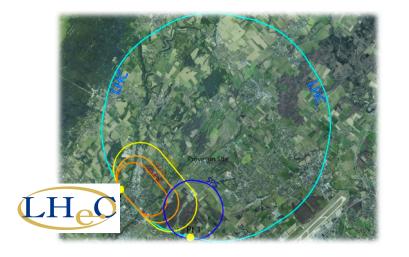


orldSciNet

eh : ERL-electrons + LHC [FCC-hh]

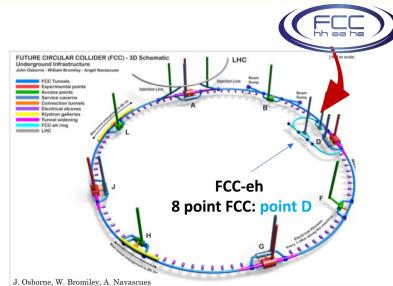
Using energy recovery in same structure: sustainable technology with power consumption < 100 MW instead of 1 GW for a conventional LINAC.

Beam dump: no radioactive waste!

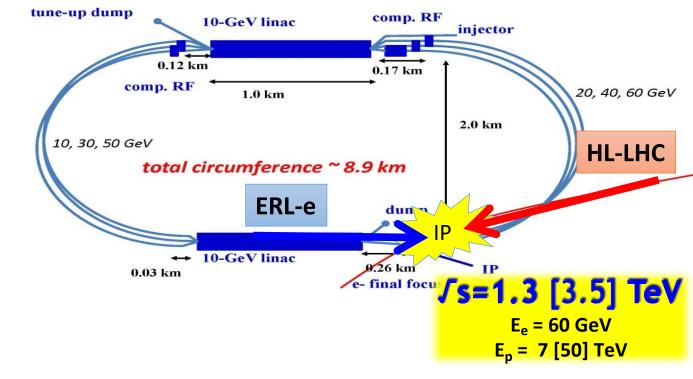

LHeC [FCC-eh] L= 1000 [2000] fb⁻¹ in 10 [20] years

'No' pile-up: <0.1@LHeC; ~1@FCCeh</pre>

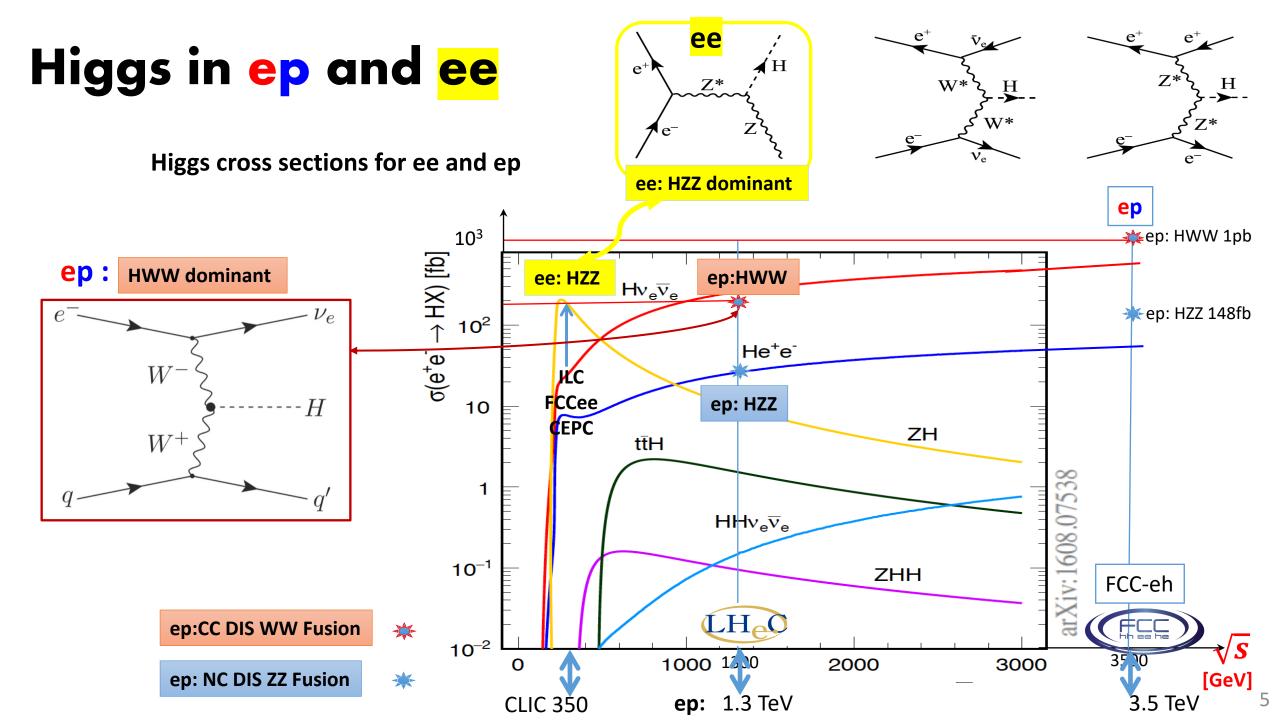
CDR update J. Phys. G 48 (2021) 11, 110501 [arXiv:2007.14491]; see talk by J D' Hondt 3


<u>Concurrent</u> eh and hh operation with same running time!

Genuine Twin Collider idea holds for LHC and FCC-hh.


<u>Concurrent</u> eh and hh operation with same running time!

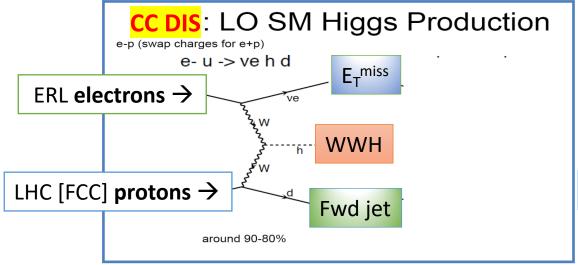
Genuine Twin Collider idea holds for LHC and FCC-hh.


eh : ERL-electrons + LHC [FCC-hh]

- Using energy recovery in same structure: *sustainable* technology with power consumption < 100 MW *instead of 1 GW for a conventional LINAC.*
 - Beam dump: no radioactive waste!

- LHeC [FCC-eh] L= 1000 [2000] fb⁻¹ in 10 [20] years
 - <u>'No' pile-up</u>: <0.1@LHeC; ~1@FCCeh</pre>

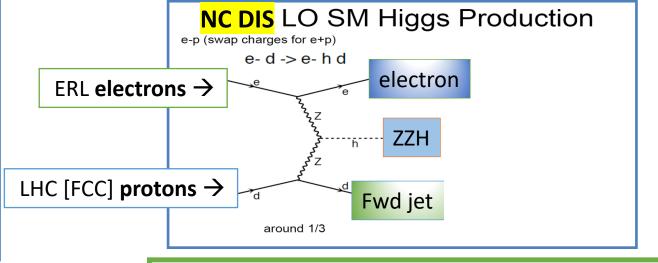
CDR update J. Phys. G 48 (2021) 11, 110501 [arXiv:2007.14491]; see talk by J D' Hondt 4


Total cross sections

(LO QCD CTEQ6L1 M_H=125 GeV)

c.m.s. energy	1.3 TeV LHeC	3.5 TeV FCC-eh
P _e =-80% CC DIS NC DIS	<mark>197 fb</mark> 24 fb	<mark>1004 fb</mark> 150 fb

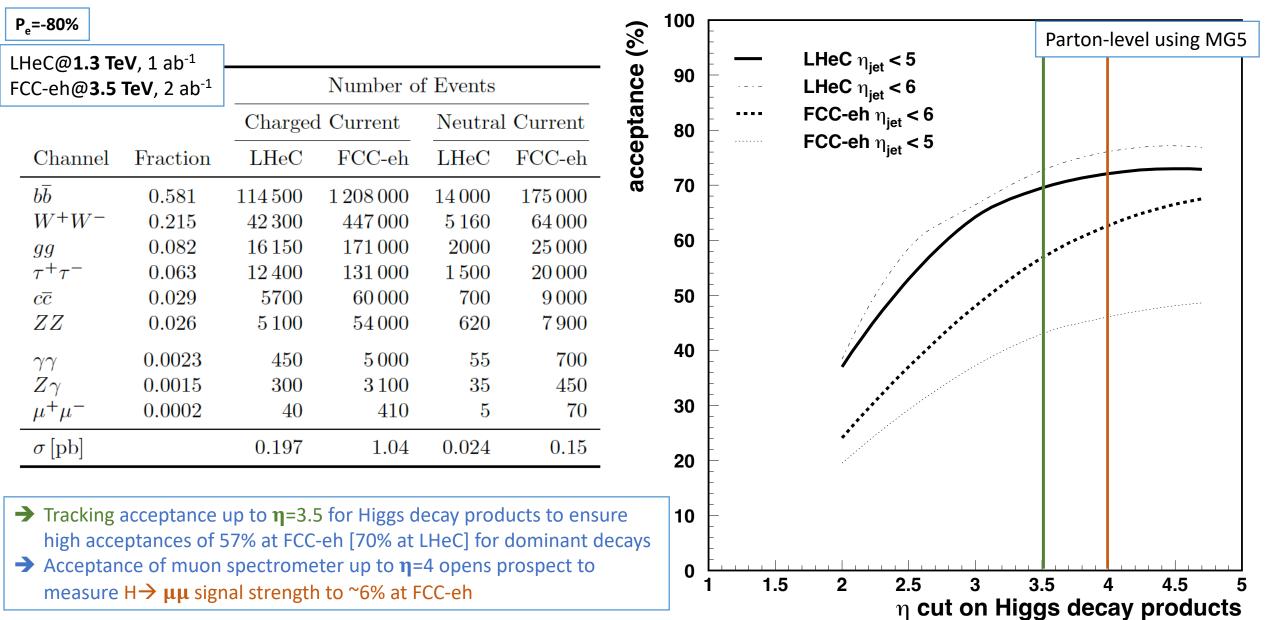
→ In ep, direction of quark (Fwd jet) is well defined.


SM Higgs Production in DIS ep

Total cross sections

(LO QCD CTEQ6L1 M_H=125 GeV)

c.m.s. energy	1.3 TeV LHeC	3.5 TeV FCC-eh
P _e =-80% CC DIS NC DIS	<mark>197 fb</mark> 24 fb	<mark>1004 fb</mark> 150 fb


→ In ep, direction of quark ('Fwd jet') is well defined.

•*Scale* dependencies of the LO calculations are about 5-10%. Tests done with MG5 and CompHep.

• NLO QCD corrections are small, but shape distortions of kinematic distributions up to 20%. QED corrections up to -5%. [J. Blumlein, G.J. van Oldenborgh, R. Ruckl, Nucl.Phys.B395:35-59,1993] [B.Jager, arXiv:1001.3789]

> Theory well under control in ep! LHeC will deliver N³LO PDFs, δm_c to 3 MeV, δm_b to 10 MeV and $\delta \alpha_s$ to ~0.1-0.2%

Rates and Geometric acceptances

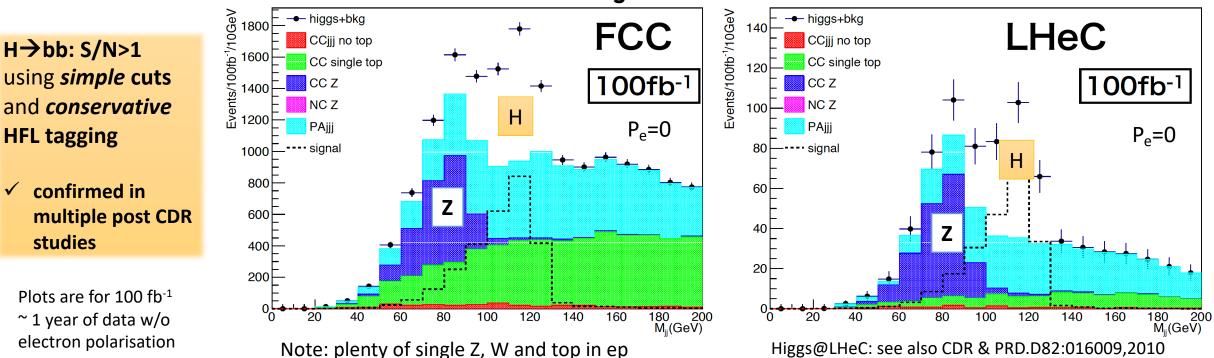
Higgs in eh: *cut* based results

Unpolarised ($P_e=0$) samples for $E_e=60$ GeV

 \checkmark

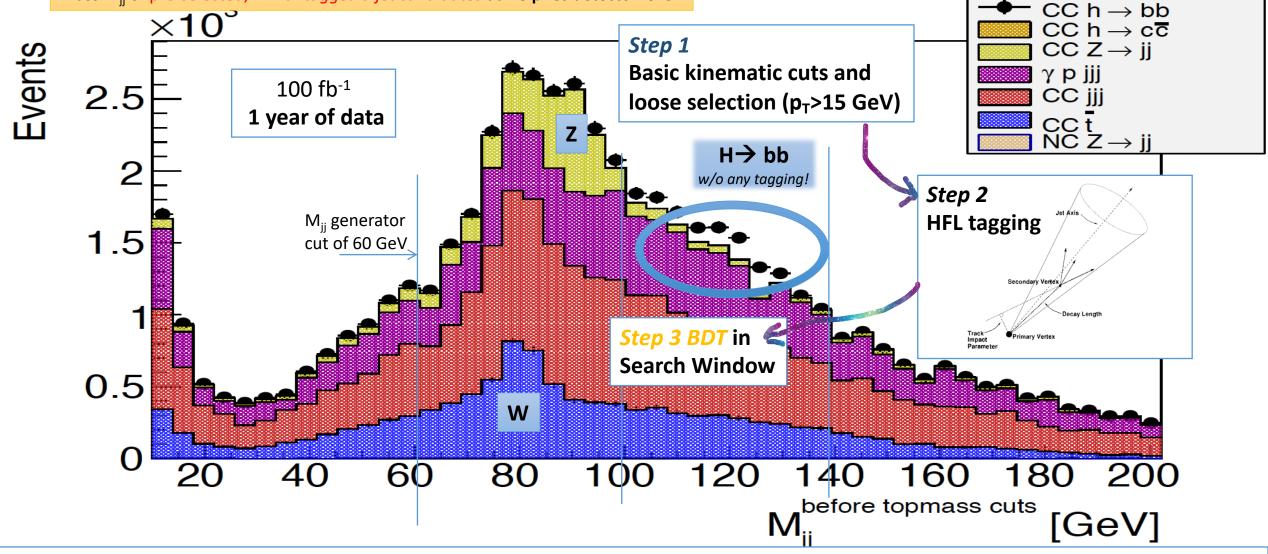
E _p =7 TeV	LHe	С	-	E _p =50 TeV	FC	С	
	σ (pb)	Nsample	N/σ(fb ⁻¹)		σ (pb)	Nsample	N/ σ (fb ⁻¹)
Signal CC:H->bb	0.113	0.2M	1760	Signal CC:H->bb	0.467	0.15M	321
CCjjj no top	4.5	2.6M	570	CCjjj no top	21.2	1.95M	92
CC single top	0.77	0.9M	1160	CC single top	9.75	1.05M	108
CC Z	0.52	0.6M	1160	CC Z	1.6	0.15M	94
NC Z	0.13	0.15M	1140	NC Z	0.33	0.15M	455
PAjjj	41	14M	350	PĄjįj	262	12.9M	49

Masahiro Tanaka, Masahiro Kuze, Tokyo Tech 2017/2018 See also M Schott@Off-shell 2021, Hbb in ep using ATLAS software


9

MadGraph and

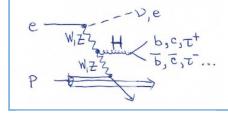
Delphes ep-style detector


+ flat parton-level b-tagging for |n|<3.0 conservative HFL tagging: b: 60%, c: 10%, udsg: 1% CAL coverage |n|<5 LHeC [<6 FCC-eh]

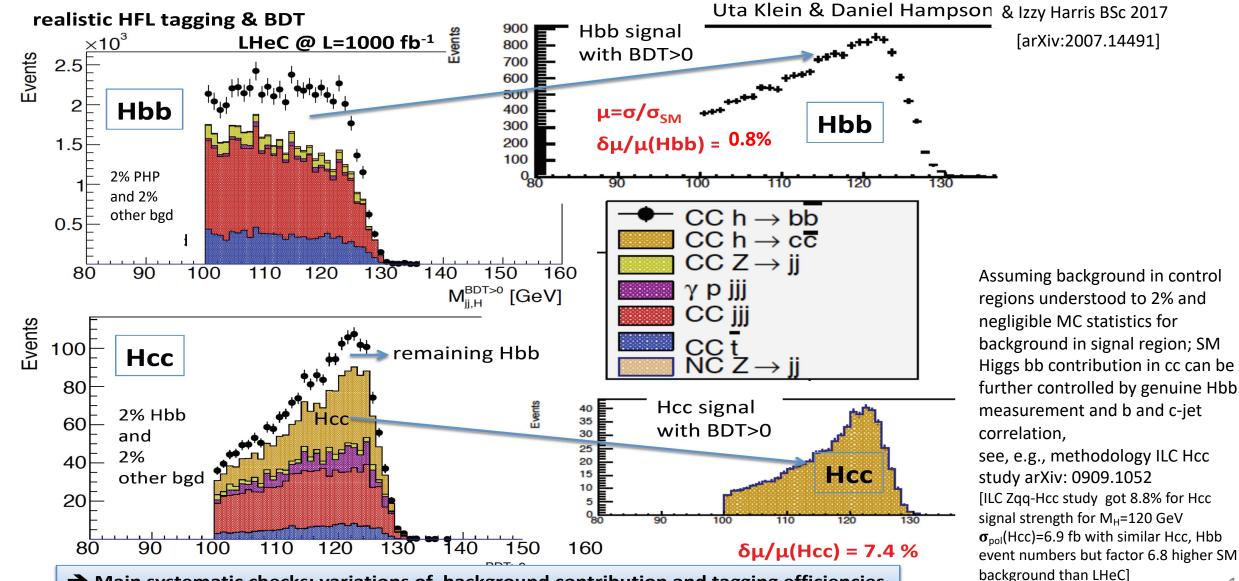
Mass of 2 b-jets after event selection

Hunting for Precision Hbb : **BDT** based

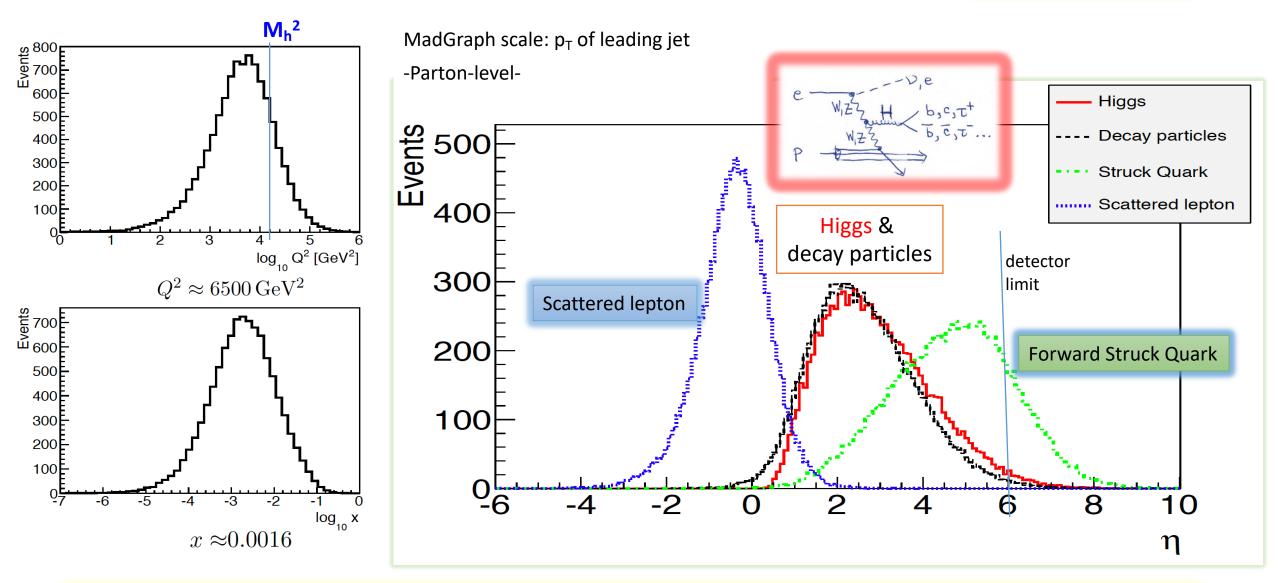
Mass M_{ii} of pre-selected, *HFL untagged dijet candidates* at **Delphes** detector level



'Worst' case scenario plot : Photoproduction multijet background (' γ p jjj' in purple) is assumed to be 100%! It has been modelled using the Weizsäcker-Williams approximation and alternatively with PYTHIA.


 \rightarrow addition of small angle electron taggers will reduce PHP to ~1-2%

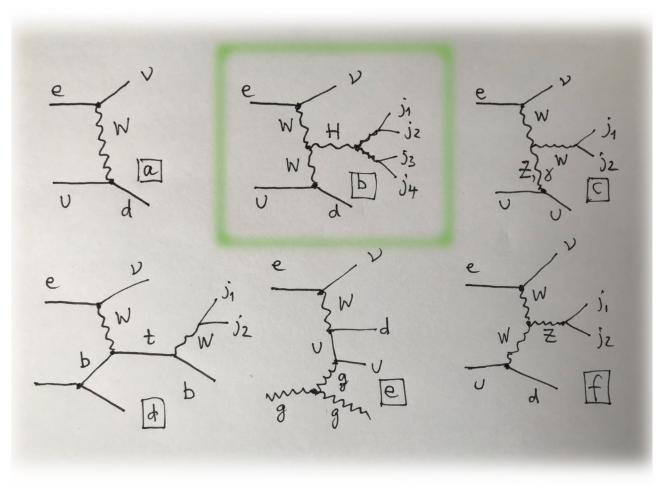
Higgs in ep – clean S/B, no pile-up



Neural networks/BDT is crucial for precision

➔ Main systematic checks: variations of background contribution and tagging efficiencies

Kinematic Distributions at FCC-eh


Higgs decay particles (here to W*W), struck quark and scattered lepton are well separated in detector acceptance.

WW to Higgs to W*W to 4 jets

hh ee he

CC DIS Higgs production and decay to W^*W gives direct access to g^4_{HWW} assuming no NP in production and decay

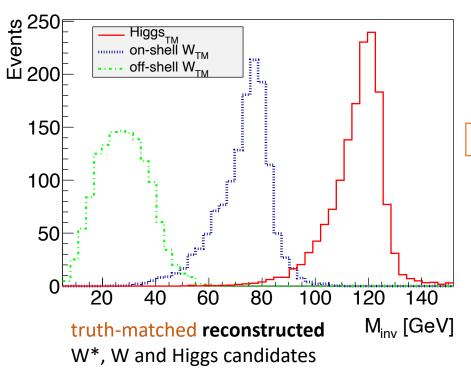
 \rightarrow g_{HWW} with δ g_{HWW} = $\frac{1}{4} \delta \mu / \mu (H \rightarrow W^*W)$

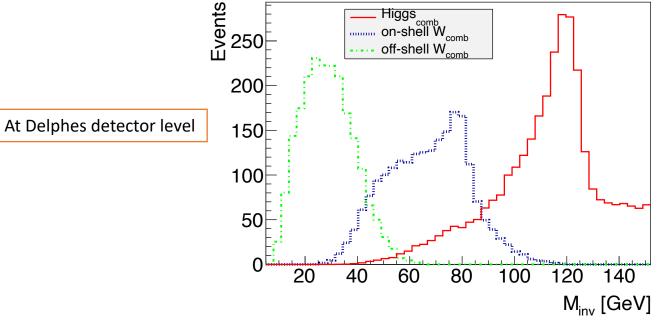
Study for **FCC-eh** at 3.5 TeV: [arXiv:2007.14491] Signal and Background generated by MG5+PYTHIA using BR($H \rightarrow WW$)=21.5% and 67% for $W \rightarrow jj$ decay:

σ=100 fb ~45% of **σ**(HWW)

- passed thru FCC-eh Delphes detector
- background processes dominated by CC
 DIS multijets, single top, H, W, Z + jets (4th + more jets from shower)
- \rightarrow various anti-kt R choices studied for the

resolved case: all 4 jets reconstructed

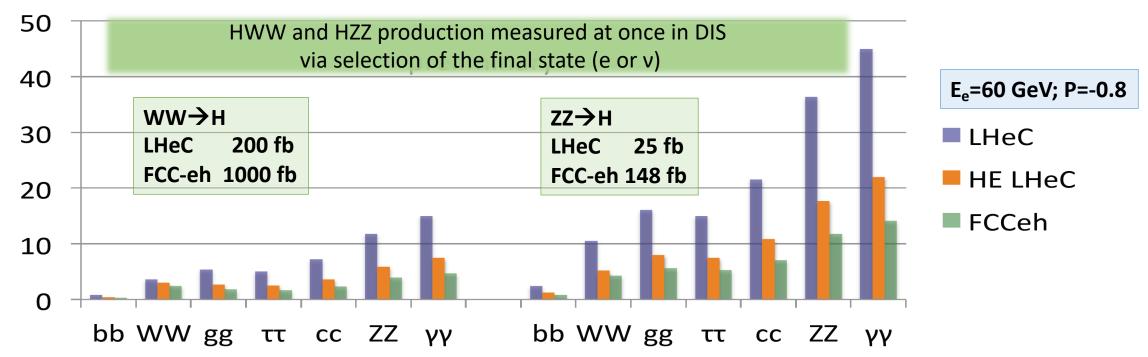

 \rightarrow optimal choice R=0.7


Note: more event categories and decay modes could be added *a la* LHC-style studies

$H \rightarrow WW^*$ analysis strategy & results

Very precise results expected from this channel only : $\delta g_{HWW} \simeq 0.5\%$ to 0.6%

NO mass requirements in combinatorics!



Reconstructed W*, W and Higgs, after jet combinatorics based on selecting at least 5 jets with $p_T > 6$ GeV and finding the Higgs candidate which has two jet pairs with min $\Delta \eta$; max $\Delta \eta$ between Higgs candidate and fwd jet; max $\Delta \phi$ between Higgs candidate and E_T^{miss} or Higgs candidate and fwd jet \rightarrow then passed to BDT for S/N optimisation

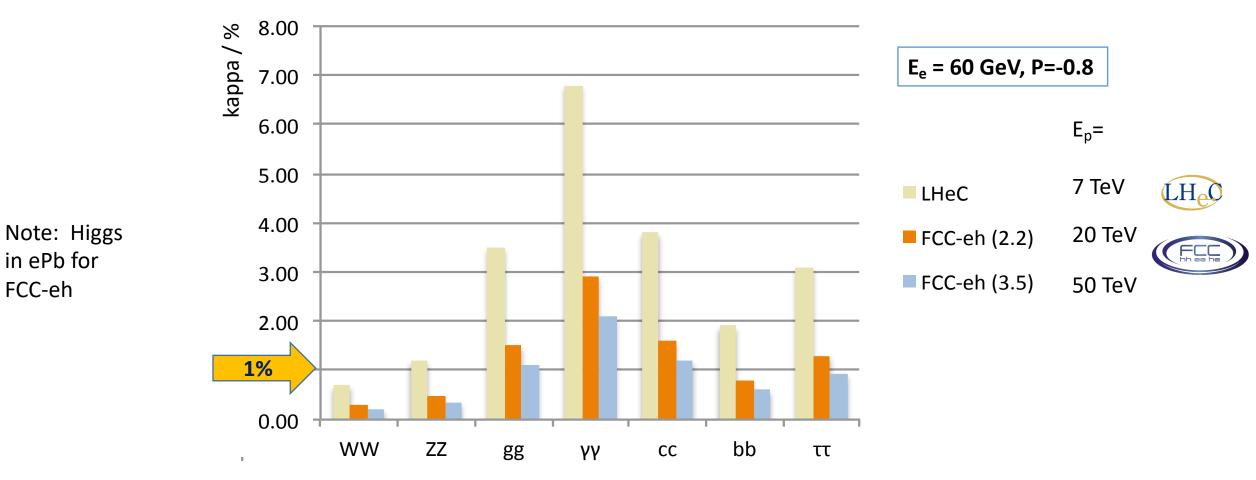
- ✓ Acceptance × efficiency of 20% ;
- ✓ Purity of 68% that true forward jet is identified for pre-selected events ;
- HWW signal strengths of 1.9 to 2.5% reached depending on background assumptions and pre-selection & BDT details.

SM Higgs Signal Strength uncertainties $\delta\mu/\mu$ in ep

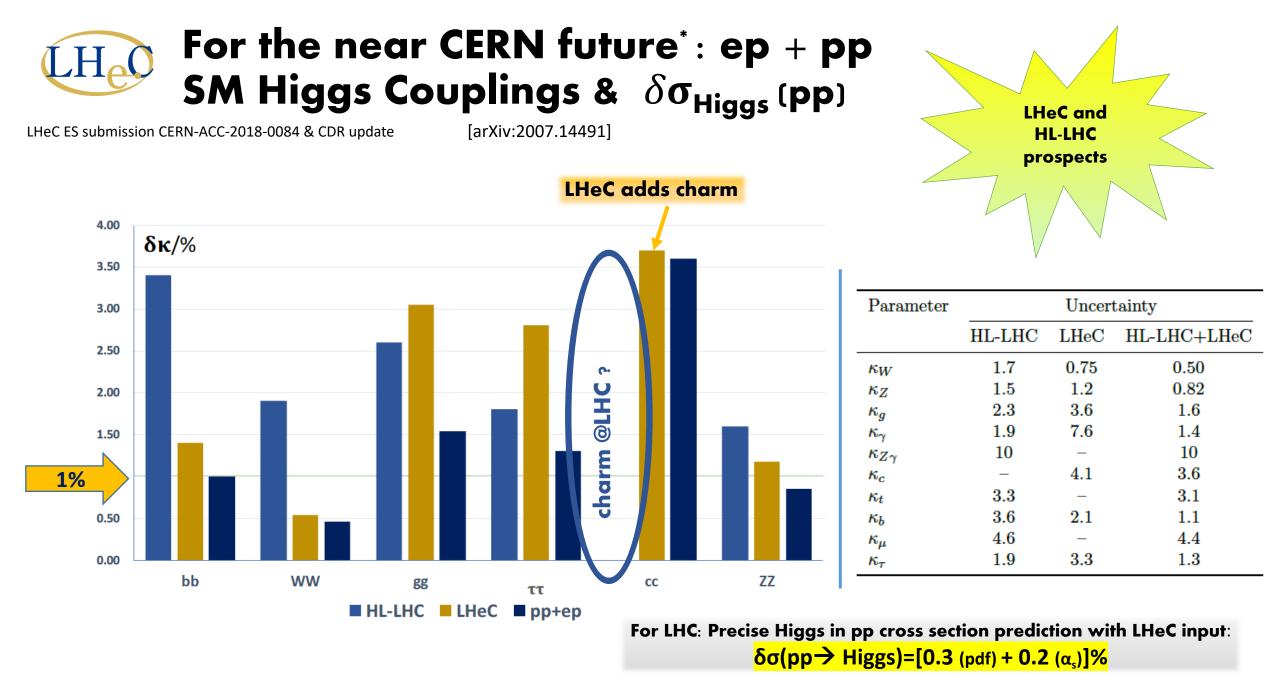
δμ/μ [%]

Charged Currents: $ep \rightarrow vHX$ Neutral Currents: $ep \rightarrow eHX$

NC and CC DIS together over-constrain Higgs couplings in a combined SM fit.


 $E_e = 60 \text{ GeV}$ LHeC $E_p = 7 \text{ TeV}$ L=1ab⁻¹ HE-LHC $E_p = 14 \text{ TeV}$ L=2ab⁻¹ FCC: $E_p = 50 \text{ TeV}$ L=2ab⁻¹

Stand-alone ep k *Coupling* Fits


in ePb for

FCC-eh

Assuming SM branching fractions weighted by the measured κ values, and Γ_{md} (c.f. CLIC model-dependent method) see e.g. [arXiv:1608.07538]

Very high precision due to CC+NC DIS in clean environment in luminous, energy frontier ep scattering

Higgs @ HL-LHC, ee and FCC-eh

within kappa framework; st	atistical errors	only	t	o explore the	e synergy ful	ly	FCC-eh
Collider	HL-LHC	ILC_{250}	CLIC ₃₈₀		FCC-ee		FCC-eh
Luminosity (ab^{-1})	3	2	0.5	5@	+1.5 @	+	2
				240 GeV	365 GeV	HL-LHC	
Years	25	15	7	3	+4		20
$\delta\Gamma_{\rm H}/\Gamma_{\rm H}$ (%)	SM	3.8	6.3	2.7	1.3	1.1	SM
$\delta g_{\mathrm{HZZ}}/g_{\mathrm{HZZ}}$ (%)	1.3	0.35	0.80	0.2	0.17	0.16	0.43
$\delta g_{\mathrm{HWW}}/g_{\mathrm{HWW}}$ (%)	1.4	1.7	1.3	1.3	0.43	0.40	0.26
$\delta g_{ m Hbb}/g_{ m Hbb}$ (%)	2.9	1.8	2.8	1.3	0.61	0.55	0.74
$\delta g_{ m Hcc}/g_{ m Hcc}$ (%)	SM	2.3	6.8	1.7	1.21	1.18	1.35
$\delta g_{ m Hgg}/g_{ m Hgg}$ (%)	1.8	2.2	3.8	1.6	1.01	0.83	1.17
$\delta g_{\mathrm{H}\tau\tau}/g_{\mathrm{H}\tau\tau}$ (%)	1.7	1.9	4.2	1.4	0.74	0.64	1.10
$\delta g_{ m H\mu\mu}/g_{ m H\mu\mu}$ (%)	4.4	13	n.a.	10.1	9.0	3.9	n.a.
$\delta g_{\mathrm{H}\gamma\gamma}/g_{\mathrm{H}\gamma\gamma}$ (%)	1.6	6.4	n.a.	4.8	3.9	1.1	2.3
$\delta g_{ m Htt}/g_{ m Htt}$ (%)	2.5	—	_			2.4	ttH 1.7
BR_{EXO} (%)	SM	< 1.8	< 3.0	< 1.2	< 1.0	< 1.0	n.a.

→ Combine the complementary measurements for best physics outcome!

→ Only FCC-hh will be the machine to pin down HH and all rare decays!

Higgs-inv.: 1.2% HH ~20%

Stand alone Branching for invisible Higgs

Satoshi Kawaguchi, Masahiro Kuze Tokyo Tech

Values given in case of 2σ and L=1 ab⁻¹

Delphes detectors	LHeC [HE-LHeC] 1.3 [1.8 TeV]	FCC-eh 3.5 TeV
LHC-style	4.7% [3.2%]	1.9%
'ep-style'	5.7%	2.6%
+BDT Optimisation	5.5% (4.5%*)	1.7% (2.1%*)

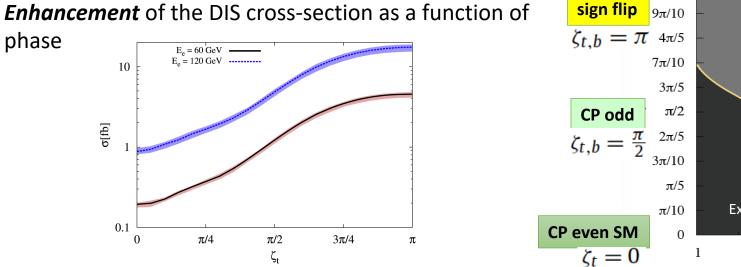
e e⁻ ep:ZZH g f jet

LHeC parton-level, cut based <6% [Y.-L.Tang et al. arXiv: 1508.01095]

- ✓ Uses ZZH fusion process to estimate prospects of Higgs to invisible decay using standard cut/BDT analysis techniques focused on a stand alone determination
- ✓ Full MG5+Delphes analyses, done for 3 c.m.s. energies → very encouraging for a measurement of the branching of Higgs to invisible in ep down to 5% [1.2%] for 1 [2] ab⁻¹ for LHeC [FCC-eh]
- ✓ <u>A lot of checks done:</u> We also checked LHeC ← → FCC-he scaling with the corresponding cross sections (* results in table): Downscaling FCC-eh simulation results to LHeC would give 4.5%, while up-scaling of LHeC simulation to FCC-he would result in 2.1%
 → all well within uncertainties of projections of ~25%

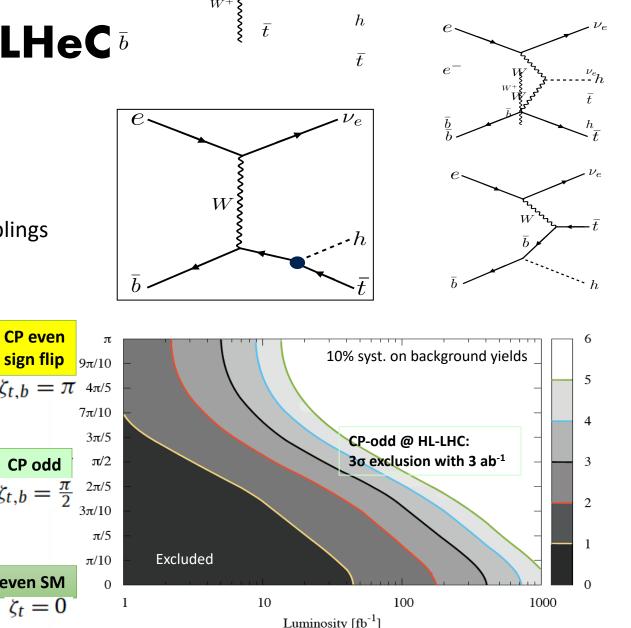
➔ further detector and analysis details have certainly an impact on results to enhance potential further

PORTAL to Dark Matter ?

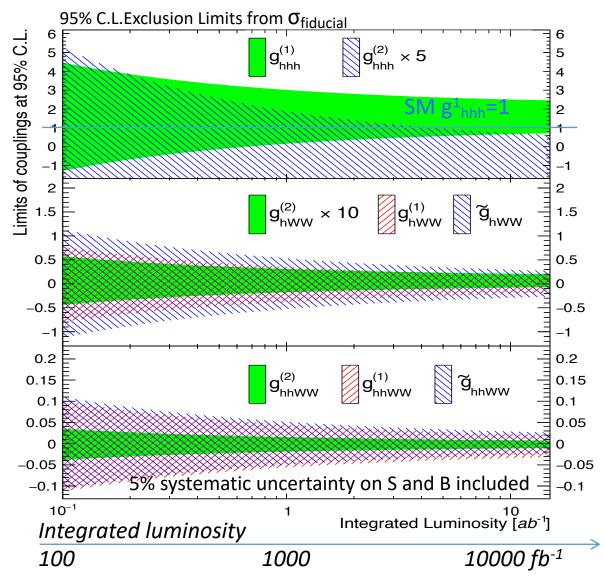

Top Yukawa Coupling @ LHeC ⁵


B.Coleppa, M.Kumar, S.Kumar, B.Mellado, PLB770 (2017) 335

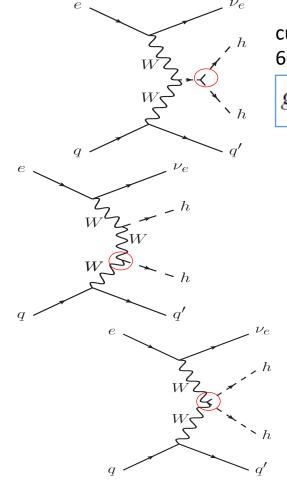
SM:
$$\mathcal{L}_{\text{Yukawa}} = -\frac{m_t}{v}\bar{t}th - \frac{m_b}{v}\bar{b}bh$$
,


BSM: Introduce phases of top-Higgs and bottom-Higgs couplings

 $\mathcal{L} = -\frac{m_t}{v} \bar{t} \left[\kappa \cos \zeta_t + i\gamma_5 \sin \zeta_t\right] t h$ $-\frac{m_b}{v} \bar{b} \left[\cos \zeta_b + i\gamma_5 \sin \zeta_b\right] b h.$



→ With Zero Phase: Measure **ttH c**oupling with 17% accuracy at LHeC → extrapolation to FCC-eh: ttH to 1.7%



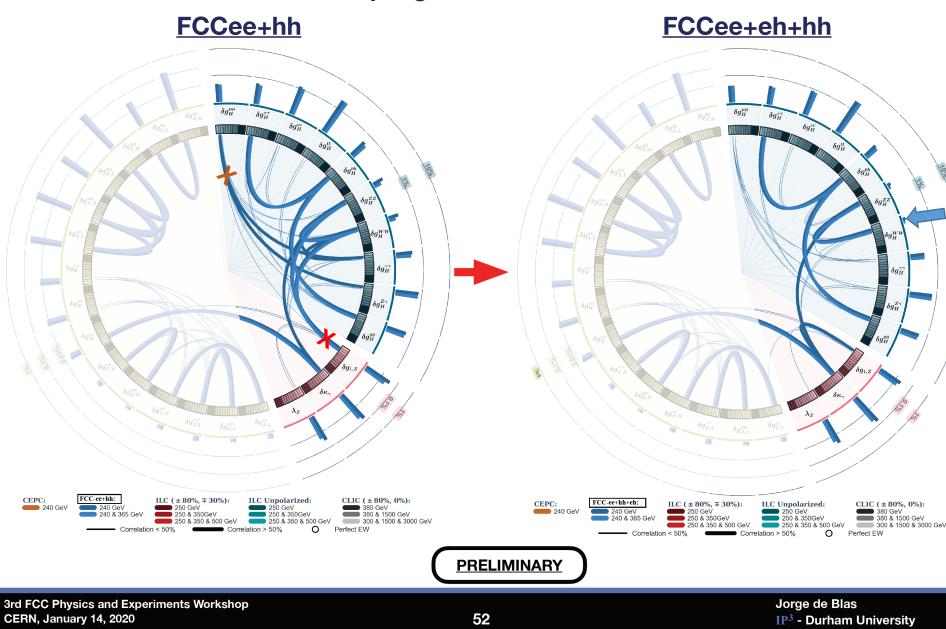
Double Higgs Production

Encouraging FCC-eh <u>cut-based</u> study; full Delphes-detector simulation; conservative HFL tagging \rightarrow full potential to be explored yet

FCC-eh g_{HHH} ~ 20% in ep only → go for ep+pp Higgs physics combination!

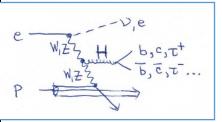
cut-based 1 σ for SM hhh for E_e 60 (120)GeV and 10ab^-1

$g_{_{hhh}}^{(1)} =$	$1.00_{-0.17(0.12)}^{+0.24(0.14)}$
----------------------	------------------------------------


Probing anomalous couplings within Higgs EFT: limits are obtained by scanning one of the non-BSM coupling while keeping other couplings to their SM values.

Here $g_{(\dots)}^{(i)}$, i = 1, 2, and $\tilde{g}_{(\dots)}$ are real coefficients corresponding to the CP-even and CP-odd couplings respectively, of the *hhh*, *hWW* and *hhWW* anomalous vertices.

Note: Bands show the still allowed regions


Interplay EW/Higgs at future colliders

Couplings and correlations

J de Blas at FCC WS 2020

See also Talk by Sally Dawson@DIS21, p13 Higgs at future colliders; Tables in backup & [arXiV: 1905.03764]

eh resolves HWW-HZZ correlation, see line marked with X on left plot, and reduces further correlations

> Higgs measurements in the three collider modes ee, ep, pp are also important for theory development

Please take home ... that ...

- A high energy ep collider like LHeC and FCC-eh could measure the dominant (Hbb, HWW, Hgg, HZZ, Hcc, Hττ) Higgs couplings, and ttH, to high precision [CC+NC DIS, no pile-up, clean final state..]
- Higgs measurements in ep are *self consistent,* experimentally and theoretically, based on DIS cross sections with very small systematic uncertainties.
- Striking synergy of ep (HWW and Vs >~1 TeV) and ee (HZZ and Vs of 250 to 350 GeV) and pp for Higgs coupling measurements, and to remove HZZ and HWW and further correlations!
- Energy frontier ep would empower the physics potential of highest energy proton-proton colliders (LHC, FCC-hh) for Higgs (differential distributions!) through high precision QCD measurements: flavour separated PDFs at N³LO, α_s to per mille accuracy...

Combining pp with ep, a very powerful Higgs facility can be established at the HL-LHC already in the 30ties and, later, at the FCC eh+hh.

Additional material

HL-LHC and LHeC

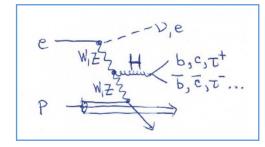
- Combined -

Parameter	Uncertainty			
	HL-LHC	LHeC	HL-LHC+LHeC	
κ_W	1.7	0.75	0.50	
κ_Z	1.5	1.2	0.82	
κ_g	2.3	3.6	1.6	
κ_{γ}	1.9	7.6	1.4	
$\kappa_{Z\gamma}$	10	_	10	
κ_c	_	4.1	3.6	
κ_t	3.3	_	3.1	
κ_b	3.6	2.1	1.1	
κ_{μ}	4.6	_	4.4	
$\kappa_{ au}$	1.9	3.3	1.3	

Table 9.5: Results of the combined HL-LHC + LHeC κ fit. The output of the fit is compared with the results of the HL-LHC and LHeC stand-alone fits. The uncertainties of the κ values are given in per cent.

Process	$\sigma_H \; [\mathrm{pb}]$	$\Delta \sigma_{\rm scales}$	$\Delta \sigma_{\mathrm{PDF}+lpha_{\mathrm{s}}}$	
			$\operatorname{HL-LHC}\operatorname{PDF}$	$\mathrm{LHeC}\mathrm{PDF}$
Gluon-fusion	54.7	5.4%	3.1%	0.4%
Vector-boson-fusion	4.3	2.1%	0.4%	0.3%
$pp \to WH$	1.5	0.5%	1.4%	0.2%
$pp \rightarrow ZH$	1.0	3.5%	1.9%	0.3%
$pp \to t\bar{t}H$	0.6	7.5%	3.5%	0.4%

Table 9.4: Predictions for Higgs boson production cross sections at the HL-LHC at $\sqrt{s} = 14$ TeV and its associated relative uncertainties from scale variations and two PDF projections, HL-LHC and LHeC PDFs, $\Delta \sigma$. The PDF uncertainties include uncertainties of $\alpha_{\rm s}$.


Consistency Checks of EW Theory

 \rightarrow similar tests possible using various cms energy CLIC machines, see e.g. [arXiv:1608.07538], however, in ep, we could perform them with one machine

$$\frac{\sigma_{WW \to H \to ii}}{\sigma_{ZZ \to H \to ii}} = \frac{\kappa_W^2}{\kappa_Z^2}$$

$$\frac{\kappa_W}{\kappa_Z} = \cos^2 \theta_W = 1 - \sin^2 \theta_W$$

- → Dominated by H→ bb decay channel precision
- Very interesting consistency check of EW theory

➤ Values for cos²Θ given here are the PDG value as central value 0.777 and uncertainty from ep Higgs measurement prospects

LHeC:	± 0.010
HE-LHeC	± 0.006
FCC-eh	± 0.004

➔ Another nice test: How does the Higgs couple to 3rd and 2nd generation quark? b is down-type and c is up-type

$$\frac{\sigma_{WW \to H \to c\bar{c}}}{\sigma_{WW \to H \to b\bar{b}}} = \frac{\kappa_c^2}{\kappa_b^2}$$