(Prospects of) Higgs self-coupling measurements at the FCC-hh

Angela Taliercio, <u>Birgit Stapf</u>, Elisabetta Gallo, Kerstin Tackmann, Paola Mastrapasqua

24.08.2023 | EPS 2023 | Hamburg

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Higgs self-coupling @ FCC-hh: What & why?

🚆 Universität Hamburg

CLUSTER OF EXCELLENCE

OLIANTUM UNIVERSE

- **FCC-hh**: *pp*-collisions at 100 TeV, 30 ab⁻¹ in ~25 years
 - Energy and precision frontier!
- Measuring the Higgs self-coupling via di-Higgs production is key benchmark for FCC-hh
 - SM: $\sigma(ggHH) \sim O(1000)$ smaller than $\sigma(ggH)$
 - Large cross-section and data-set at FCC-hh
 - 20 x precision of HL-LHC
 - Access rarer, more difficult channels

Overview of Higgs self-coupling limits & prospects

Experiment	95% CL limit	Reference
ATLAS - HH - H+HH	$-0.6 < \kappa_{\lambda} < 6.6$ $-0.4 < \kappa_{\lambda} < 6.3$	<u>ATLAS-HDBS-2022</u> <u>-03</u>
CMS - HH	-1.2 < κ _λ < 6.5	<u>Nature 607 (2022)</u> <u>60</u>
	$oldsymbol{\delta\kappa}_{\lambda}$ (68% CL)	
HL-LHC	~50%	e.g. <u>ATL-PHYS-PUB-20</u> <u>22-005</u>

Overview of Higgs self-coupling limits & prospects

Experiment	95% CL limit	Reference	Best case scenarios for Future Colliders			
ATLAS - HH	$-0.6 < \kappa_1 < 6.6$	ATLAS-HDBS-2022 -03	Experiment	$\delta\kappa_\lambda$ (68% CL)	Reference	
- H+HH	$-0.4 < \kappa_{\lambda}^{^{\lambda}} < 6.3$		ILC (1 TeV)	10%	<u>arXiv:2203.07622</u> <u>v2</u>	
CMS	-12 < r < 65	<u>Nature 607 (2022)</u> <u>60</u>	CLIC (3 TeV)	9%	<u>arXiv:1812.01644</u> <u>v1</u>	
- 1111	$-1.2 < \kappa_{\lambda} < 0.5$		FCC-ee	24%	<u>JHEP01(2020)139</u>	1.
	$\delta\kappa_1$ (68% CL)			2170	-	J H only
HL-LHC	~50%	e.g. ATI -PHYS-PUB-20	μ (10 TeV)	4%	<u>arXiv:2203.07261</u> <u>v2</u>	НН
		22-005	FCC-hh	3%	<u>arXiv:2004.03505</u> <u>v2</u>	

UH H Universität Hamburg

Higgs self-coupling projections for FCC-hh

	Combined precision
$oldsymbol{\delta\kappa}_{\lambda}$ (68% CL)	3.0% - 7.8%

🖞 Universität Hamburg

CLUSTER OF EXCELLENCE

OLIANTUM LINIVERSE

• FCC-hh potential well

established in several channels

- Previously published combination included
 bbyy, bbrr(hh+lh), 4b and bbZZ(4l)
- Considered three different scenarios for detector performance and systematic uncertainties by reweighting from main detector scenario based on LHC performance & FCC-hh TDR

This talk: Update of $\overline{b}byy$ and adding $\overline{b}bll + E_T^{miss}$

UH H Universität Hamburg

DER EDRECHTING I DER IEURE I DER BIT

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

DESY.

• Studying only <i>ggF HH</i>	Final state	BR(HH→X)	Description
production mode (so far)	Бbуу	0.26%	High precision, despite small
bb 33.6% Assuming SM Higgs BR BR HH \rightarrow xxyy (m _H = 125 GeV) arXiv:1708.08249 10 ⁻²			BR: Clean signature with wellreconstructed objectsDNN-based analysis
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	bbll+E _T ^{miss}	3.24%	 Summing contributions from <i>bbWW(lvlv)+bbrr(llvlv)+bbZZ(llvv)</i> Larger BR, but more background contaminated, limited precision Not studied at FCC-hh before Cut-based analysis

Common software stack for future facilities

CLUSTER OF EXCELLENCE

OLIANTUM UNIVERSE

🖞 Universität Hamburg

Common software stack for future facilities

🚆 Universität Hamburg

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

Fast, parametrized detector simulation with <u>Delphes</u> with <u>updated FCC-hh card</u>

 Very optimistic "ideal" scenario, implement fixes & new features

Example parametrization for muons

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

DESY.

Universität Hamburg

*t*tH enhanced - same final
 state as signal signature

🚆 Universität Hamburg

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

DESY.

• $\sigma(\bar{t}\bar{t}H\rightarrow\gamma\gamma)\sim 3 \sigma(ggHH\rightarrow bb\gamma\gamma)$

- Exploit expected differences in kinematics:
 - $\overline{t}tH$ more jets, but less energetic
 - $\overline{tt}H$ can contain high pT leptons
 - *bb* and *yy*-pair back to back in signal

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

DESY.

Universität Hamburg

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

DESY.

Universität Hamburg

- Separate DNNs for suppressing nonbackground, using same input variables as *t*tH tagger
- Optimization of cuts based on significance

$\overline{bbll} + E_T^{miss}$: Strategy overview

- Cut-based event selection exploiting signal kinematics
 - Targeted suppression of \overline{tt}

background using

$$m_{lb}^{\text{reco}} = \min\left(\frac{m_{l_1b_1} + m_{l_2b_2}}{2}, \frac{m_{l_2b_1} + m_{l_1b_2}}{2}\right)$$

- <u>Stransverse mass</u> m_{T2} predicts invisible mass contribution
 - Capture the full *HH* decay
 - Fit to m_{T2} distribution in 5 categories depending on lepton

flavours and if Z(ll) decay

• Lepton pair + E_{τ}^{Miss} + 2 *b*-jets

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

DESY

Signal signature

И

Η

Leptons isolated from *b*-jets

🚆 Universität Hamburg

Combination: Systematic uncertainties

Source of uncertainty	Syst. 1	Syst. 2	Syst. 3	Applies to	Correlated
Common systematics					
b-jet ID / b-jet	0.5%	1%	2%	Signals, MC bkgs.	1
Luminosity	0.5%	1%	2%	Signals, MC bkgs.	\checkmark
Signal cross-section	0.5%	1%	1.5%	Signals, MC bkgs.	\checkmark
$b\bar{b}\gamma\gamma$ systematics					
γ ID / γ	0.5%	1%	2%	Signals, MC bkgs.	×
$b\bar{b}\ell\ell + E_{\rm T}^{\rm miss}$ systematics					
Lepton ID / lepton	0.5%	1%	2%	Signals, MC bkgs.	×
Data-driven bkg. est.	-	1%	1%	V + jets	×
Data-driven bkg. est.	-	-	1%	$t \overline{t}$	×

- Following previous di-Higgs studies@FCC-hh
- Applied as rate systematics only, no shape effect

Combination: Self-coupling precision

- Higgs self-coupling modifier κ_{λ} interpretation
 - Parametrized dependence of σ (ggHH) on κ_{λ}
 - Inputs: $\kappa_{\lambda} = 1.0, 2.4, 3.0$
 - All other couplings fixed to SM
 - NLO cross-sections at 100 TeV, with *k*-factor independent of κ_{λ}
 - No Higgs BR dependance on κ_{λ} and uncertainties or other additional theory uncertainties

	Stat. only	Syst. 1	Syst. 2	Syst. 3
$oldsymbol{\delta}\kappa_{\lambda}^{}$ (68% CL)	3.2%	3.6%	3.9%	5.7%

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

Higgs self-coupling measurements at the FCC-hh | Birgit Stapf | 24.08.2023 | EPS 2023 | Hamburg

Combination: Self-coupling precision

DESY. CLUSTER OF EXCELLENCE QUANTUM UNIVERSE Universität Hamburg

Higgs self-coupling measurements at the FCC-hh | Birgit Stapf | 24.08.2023 | EPS 2023 | Hamburg

Summary

CLUSTER OF EXCELLENCE

- Explored $\overline{bb}\gamma\gamma$ and $\overline{bbll}+E_{T}^{Miss}$ final states for di-Higgs measurements @ FCC-hh
 - Using updated (optimistic) Delphes scenario
 - $bb\gamma\gamma$ analysis using multiple DNN
 - Dedicated $\overline{tt}H$ tagger + DNN against non-resonant & rest single Higgs
 - $Bbll + E_T^{Miss}$ new addition, fully cut-based
 - Sensitivity limited by large \overline{tt} background
- Combination reaches 3-5% κ_{λ} precision, depending on syst. uncertainties
 - Driven by $bb\gamma\gamma$, $bbll+E_T^{Miss}$ reaches ~20% precision only
 - Preliminary results from restarting FCC-hh di-Higgs effort

Di-Higgs final states

DESY. CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Parametrization of detector performance with Delphes

• Relevant efficiencies & resolutions for \overline{bbyy} and $\overline{bbll}+E_T^{miss}$

	Relative <i>p</i> resolution	Efficiency
Electrons	0.4-1%	80-99%
Muons	0.05-0.4%	94-99%
Photons	0.4-0.1%	80-95%

b-tagging efficiency: 80-90% ("medium" working point)

DESY. CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

bbyy analysis: DNN input variables

DESY. CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

bbyy analysis: DNN input variables

- The number of jets (with no b tag requirement)
- The b tag of the leading and subleading jet;
- $p_T(j)/m(jj)$ of the leading and subleading jet.
- $p_T(jj)/m(jj)$ of the dijet object;
- $p_T(\gamma)/m(\gamma\gamma)$ of the leading and subleading photon;
- $p_T(\gamma\gamma)/m(\gamma\gamma)$ of the diphoton object;
- The scalar sum of the jet p_T ;
- The ∆R between the closest photon-jet pair;
- The ΔR between the other photon-jet pair;
- **The** $\Delta \phi$ and $\Delta \eta$ between the leading and subleading photon;
- The $\Delta \phi$ and $\Delta \eta$ between the leading and subleading jet;
- **The** $\Delta \phi$ and $\Delta \eta$ between the diphoton and the dijet object,
- The angle between the diphoton object and the beam axis in the dijet rest frame;
- The angle between the leading jet and the beam axis in the dijet rest frame;
- The angle between the leading photon and the beam axis in the diphoton rest frame;
- Number of leptons, i.e. muons and electrons
- *p_T* of muons and electrons

DESY. CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

1.0

0.8

Signal kl=1.0

ttH

3.0 3.5 4.0

Signal kl=1.0

Signal kl=1.0 ttH

ggJets

res bkg

ttH

aqlets

res bkg

gglets

res bkg

$\overline{bbll} + E_T^{miss}$: Analysis strategy

*e*μ**-category**

- Signal signature: Lepton pair + E_T^{Miss} + 2 b-jets
 - Leptons isolated from b-jets ($\Delta R > 0.4$)
- Backgrounds from:
 - $\overline{t}t$ and single top
 - $\overline{tt}V$
 - Single Higgs $(ggF, VBF, \overline{tt}H, VH)$
 - V+jets
 - <mark>ttVV</mark>
- Categorization of events based on lepton flavours and whether (on-shell) Z(ll) decay is present

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

DESY.

Universität Hamburg

- <u>Stransverse mass m_{T2} predicts</u> invisible mass contribution
 - Capture the full *HH* decay

$\overline{bbll} + E_T^{miss}$: Event selection & categorization

		Analysis category	
	DFOS	SFOS, no Z -peak	SFOS, on Z -peak
Main signals	$b\bar{b}WW^*,b\bar{b} au au$	$b\bar{b}WW^*,b\bar{b} au au$	$bar{b}ZZ^*,bar{b} au au$
Selection variable		Criterion	
Lepton pair	$e\mu$	$ee ext{ or } \mu\mu$	$ee ext{ or } \mu\mu$
Number of b-jets		≥ 2	
m_{bb}		85 - $105~{\rm GeV}$	
ΔR_{bb}		< 2	
$\Delta R_{\ell\ell}$		< 1.8	
$H_{\mathrm{T2}}^{\mathrm{ratio}}$		> 0.8	
$m_{lb}^{ m reco}$		$> 150 { m ~GeV}$	
$\Delta \phi(\ell \ell, E_T^{ ext{miss}})$		< 2	< 1.2
$m_{\ell\ell}$	10 -	· 80 GeV	81 - $101~{\rm GeV}$
$\Delta \phi(\ell \ell, E_T^{\text{miss}})$ -categories	< 1.2 ("low") at	nd $1.2 - 2.0$ ("high")	-

Table 3.25.: Overview of the harmonized event selection and categorization.

Previous projections for *bbWW* @ FCC-hh

- *bbWW(2jlv)* studied using BDT, with similar input variables as used here
- Achieved 40% precision (@68% CL) on κ

 $\overline{bbll} + E_{\tau}^{miss}$: signals

Signal	BR(HH→X)	Advantage
bbWW(lvlv)	2.24%	Largest BR in $bbll+E_T^{Miss}$ final state Established for <i>HH</i> -studies @ LHC
bb <i>ττ</i> (lvvlvv)	0.88%	<i>eµ</i> channel established for single Higgs studies @ LHC
bbZZ(llvv)	0.12%	Reconstruct $Z(ll)$ decay

- Sum the contribution from all decay modes
 - Do not consider Higgs BR uncertainties
 - Three categories depending on lepton flavours,

and if there is a Z(ll) resonance

Higgs self-coupling projections for FCC-hh

•

🚊 Universität Hamburg

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

DESY

- Recently published update on *bbyy*, *bb* $\tau\tau$ (*hh+lh*), *4b* and their combination
- Analysis improvements from using Deep Neural Networks
- Simplified (more optimistic) Delphes and systematics scenarios, with explicit pile-up overlay

$\overline{bbll} + E_T^{miss}$: Event kinematics & selection

💾 Universität Hamburg

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

DESY.

 $M_{lb}^{\rm reco}$ specifically targeted to reduce $\bar{t}t$

• Defined for top-quark mass measurements in dileptonic channel

DFOS, pre-selection

Step 10¹³ 10¹² 10¹³ FCC-hh Simulation (Delphes) tī Sinale Higas s = 100 TeV, L = 30 ab⁻¹ V+jets tīv 10¹ HH(bbWW(eµ)) analysis, Kin. Sel. Single top tīVV 10¹⁰ -HH(bbll+MET) 10⁹ 10⁸ 10⁷ 10⁶ 10⁵ 10^{4} 10³ 10² 10 [∰] 0.004 0.003 0.002 0.001 0 160 180 20 m_{T2}(bb2l+MET) [GeV] 80 120 140 200 100

DFOS, low dPhi

DFOS, high dPhi

Di-Higgs cross-section dependance on κ_{λ} in pp-collisions

Higgs self-coupling @ ILC

- Two production modes:
 - Higgsstrahlung, peaks ~500 GeV
 - WW-fusion, above ~1 TeV
 - \rightarrow need runs at both energies for maximum κ_{λ} precision

- Studied dominant channels 4b and bbWW
- Advantage of *ee*-collider: *ZHH* cross-section increases with κ_{λ} , hence better constraints at values $\kappa_{\lambda} > 1$ than *pp*-colliders

Higgs self-coupling @ muon collider

• Only *4b*

		2007.0		
	3 TeV μ -coll. L $\approx 1 \text{ ab}^{-1}$	10 TeV μ -coll. L= 10 ab ⁻¹	14 TeV μ -coll. L $\approx 20 \text{ ab}^{-1}$	30 TeV μ -coll. L= 90 ab ⁻¹
		68% prob. inte	erval	
δκλ	$\begin{array}{c} \textbf{[-0.27,0.35]} \cup \textbf{[0.85,0.94]} \\ \rightarrow \textbf{[-0.15,0.16]} \ \textbf{(2\times L)} \end{array}$	[-0.035, 0.037]	[-0.024, 0.025]	[-0.011, 0.012]

2.2

Why di-Higgs at FCC-hh?

FCC-hh is the only perspective for a Higgs self-coupling precision measurement ↔ Higgs self-coupling measurement is a clear benchmark channel for the FCC-hh