

Design and Performance of the IDEA Vertex Detector at FCC-ee in Full Simulation

Armin Ilg, University of Zürich Contact: armin.ilg@cern.ch

The particle physics community is preparing for the post-LHC era by investigating the feasibility of the Future Circular Collider (FCC, [1]): a 90.6 km circumference collider to serve particle physics until the end of the 21st century. FCC-ee will produce intense e^+e^- collisions at energies of 90–365 GeV, making it an EW, Higgs and top factory. Later, the FCC is equipped with 14–20 T magnets to collide hadrons with energies of 80–116 TeV (FCC-hh).

Physics programme at FCC-ee experiments	FCC-ee detector requirements
EW : $6 \cdot 10^{12}$ Z, $2.4 \cdot 10^8$ WW, $1.9 \cdot 10^6$ tr b 20–50 or more improvement in electroweak quantities b Indirect sensitivity to new particles up to 10–70 TeV Higgs : $1.78 \cdot 10^6$ HZ, $125k$ WW \rightarrow H b Higgs width at 1.6%	e^+ and e^- are point-like particles → very different than the LHC! ► Initial <i>E</i> and <i>p</i> known ► Almost no pile-up, no QCD background FCC-ee running at the Z pole ($\sqrt{s} = 91.2 \text{ GeV}$) generates extremely large statistics (<i>tera-Z factory</i>). To benefit from this, the systematic un- certainties need to be kept down to $10^{-4}-10^{-5}$ → Stringent requirements on FCC-ee detectors !
Single W \bigvee \bigvee $Higgs couplings at percent to$	Vertex detector to determine the spatial locations of the interactions

- vertexing performance realistically

Prospects of wafer-scale DMAPS for FCC-ee vertex detectors

Depleted monolithic active \mathbb{Z}_{a} pixel sensors foreseen for $\frac{1}{2}$ vertex detector by all $e^+e^$ detector proposals Sensor and readout in one silicon die

R&D on 65 nm DMAPS at UZH

Joined team of ALICE ITS3, CERN R&D and other institutes!

Analog pixel test structure (APTS) ▶ 16 pixels, 10 to 25 μ m pitch ► Analogue readout, different processes ► Different p-well and n-well designs on single test structure (multiplexer)

Sensor is only small fraction of to- Ξ Particle gun muons tal $X/X_0 \rightarrow$ Improve tracking and $\overline{S^{\circ}} = 10^3$ vertexing performance by minimising support and readout material \rightarrow Wafer-scale curved sensors in 65 nm for ALICE ITS3 One sensor per half-layer only Self-supporting, air cooled \rightarrow Basically only silicon in vertex

• 1GeV, Standard IDEA: R(Layer₄) = 1.7 cm, w(VTX layers) = 280 μm ■ 1GeV, + R(Layer) = 1.3 cm ightarrow 1GeV, + w(first 3 VTX layers) = 30 μ m • 10GeV, Standard IDEA: R(Layer) = 1.7 cm, w(VTX layers) = 280 μm 10GeV, + R(Layer) = 1.3 cm 10GeV, + w(first 3 VTX layers) = 30 μ m 100GeV, Standard IDEA: R(Layer) = 1.7 cm, w(VTX layers) = 280 μm 100GeV, + R(Layer) = 1.3 cm \triangle 100GeV, + w(first 3 VTX layers) = 30 μ m $\cdots \cdots \cdots$ fit function = a \oplus b/(p sin^{3/2}(θ)) 90) [degrees]

IDEA Delphes simulation

Effect of reduced material budget on d_0 resolution in Delphes fast simulation, L. Freitag (BSc. thesis [3])

[1] FCC Collaboration, FCC-ee: The Lepton Collider, The European Physical Journal Special Topics 228 (2019) 261-623.

- [2] X. Mo, G. Li, M.-Q. Ruan, and X.-C. Lou, *Physics cross sections and event generation of* e^+e^- annihilations at the CEPC, Chinese Physics C 40 (2016) 033001.
- [3] L. Freitag, Benefits of Minimizing the Vertex Detector Material Budget at the FCC-ee, 2023. BSc thesis, presented 01 Feb 2023.
- [4] W. Snoeys, et al., Optimization of a 65 nm CMOS imaging process for monolithic CMOS sensors for high energy physics, in Proceedings of Pixel2022.
- [5] M. Benedikt, FCC Feasibility Study Status, layout by K. Oide, M. Hofer, et al., 06, 2023. FCC Week 2023.

- \rightarrow Test beam (three weeks ago), lab tests with Fe-55 source and X-ray tube
- Circuit Exploratoire (CE-65)
- \blacktriangleright 64x32/48x32 pixels, 15/25 μ m pitch
- Digital readout
- \rightarrow Fe-55 source for pixel-by-pixel calibration, test beam in September

Goal:

P⁺ SUBSTRATE

TPSCo 65 nm modified process with gap [4]

Fe-55 test setup

ALPIDE telescope

Development and optimisation towards FCC-ee vertex detectors Sensor perf. \leftrightarrow Vertex perf. \leftrightarrow physics perf. \leftrightarrow sensor spec.

> **EPS-HEP 2023** Universität Hamburg Hamburg, Germany 20-25. August 2023