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Mass range

T. Lin, arXiv:1904.07915 (2019)  
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Mass range

T. Lin, arXiv:1904.07915 (2019)  

Wave-like: 𝑎 𝑡 = 𝑎! sin Ω"𝑡
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Motivation
• Directly detect dark matter candidates: axions and axion-like particles.
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Motivation
• Directly detect dark matter candidates: axions and axion-like particles.

• Use coupling of axions to photons:

ℒ =
𝑔"#
4 𝑎𝐹$% ,𝐹$%

Lagrangian ℒ
𝑎: axion field 
𝑔!": coupling coefficient
𝐹: electromagnetic field-

strength tensor

𝜕&𝑬
𝜕𝑡& − 𝛻

&𝑬 = 𝑔"#�̇� 𝛻×𝑬

wave equation for electric field 𝑬

∆𝜙 = 𝑔"# 𝑎 𝑡 − 𝑎 𝑡 − 𝜏

phase difference Δ𝜙 between left-
and right-handed circular polarisation

Observable effect:
Rotation of linear
polarisation!
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Signal generation

laser source

PBS
(polarising beamsplitter)

PDs-pol

PDp-pol

readout

Input: linear s-polarisation.
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Signal generation

laser source
PDs-pol

PDp-pol

readout

Input: linear s-polarisation. Effect: polarisation rotation.

PBS
(polarising beamsplitter)



11

Signal generation

laser source
PDs-pol

PDp-pol

Input: linear s-polarisation. Effect: polarisation rotation. Output: signal in p-polarisation.

readout

2𝑓! (axion frequency)

PBS
(polarising beamsplitter)
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Signal generation

laser source
PDs-pol

PDp-pol

readout

p-pol power
at readout

sideband picture
for p-pol readout

PBS
(polarising beamsplitter)
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Signal enhancement

laser source 𝜆
2

PBS

PDs-pol

PDp-pol

readout

generate p-pol carrier 
from s-pol pump field,
enhance signal via beat
of sidebands and carrier

p-pol power
at readout

sideband picture
for p-pol readout
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Signal enhancement

laser source
folded cavity

𝜆
2

PBS

PDs-pol

PDp-pol

readout

S-pol carrier is kept on
resonance inside cavity.
⟹ Pump field buildup!
⟹ Larger sidebands!

p-pol power
at readout

sideband picture
for p-pol readout
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Co-resonance

laser source
folded cavity

𝜆
2

PBS

PDs-pol

PDp-pol

readout

S-pol carrier is kept on
resonance inside cavity.
⟹ Pump field buildup!
⟹ Larger sidebands!
P-pol signal sidebands are
co-resonant with s-pol 
pump carrier.
⟹ Sideband buildup!

p-pol power
at readout

sideband picture
for p-pol readout
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Detuning

laser source
folded cavity

𝜆
2

PBS

PDs-pol

PDp-pol

p-pol power
at readout

readout

sideband picture
for p-pol readout

P-pol resonance of signal
field is detuned from s-pol
resonance of pump field.
⟹Asymmetric sideband

buildup!
⟹ Smaller low-frequency 

sensitivity!
⟹ Sensitivity peak at a

higher signal frequency!
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Detector design

Tabletop demonstration:
− 𝟐𝟎𝟎kW intra-cavity power

to enhance signal
− 𝟓m baseline to increase

interaction time
− vacuum system 
− 𝟔𝐦𝐨𝐧𝐭𝐡𝐬 integration time for

larger signal-to-noise ratio
− squeezed light to reduce

quantum noise by up to 10dB
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Detector design

Large-scale detector:
− 𝟏MW intra-cavity power
− 𝟒𝐤m baseline
− use existing facilities of

gravitational-wave detectors 

Tabletop demonstration:
− 𝟐𝟎𝟎kW intra-cavity power

to enhance signal
− 𝟓m baseline to increase

interaction time
− vacuum system 
− 𝟔𝐦𝐨𝐧𝐭𝐡𝐬 integration time for

larger signal-to-noise ratio
− squeezed light to reduce

quantum noise by up to 10dB
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Shot-noise limited design sensitivity

CAST: CAST Collab., Nature Phys. 13, 2017
ALPS II: R. Baehre et.al., JINST 8, 2013
TeV: K. Kohri et.al., Phys. Rev. D 96, 2017



Vacuum system is set up!
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Status



Vacuum system is set up!

Basic optical setup is done!
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Status

InputReadout



Vacuum system is set up!

Basic optical setup is done!

Stable lock with injected light in
P- and S-polarisation over days!
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Status

141h ~ 6d
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Status

Vacuum system is set up!

Basic optical setup is done!

Stable lock with injected light in
P- and S-polarisation over days!

Default detuning: ~𝟒𝟕𝟔kHz / 𝟐𝐧𝐞𝐕
P-pol. finesse: 𝟐𝟐𝟐𝟎
S-pol. finesse: 𝟕𝟒𝟐𝟐𝟎
Roundtrip loss: 𝟓𝟏ppm
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Altered readout

tracking the
circulating power

readout signal
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Altered readout
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Current sensitivity 

85 hours measurement time

Sensitivity of 2×10'(! 𝐺𝑒𝑉'( at 1.989 𝑛𝑒𝑉
at the 95% confidence level

Approaching CAST sensitivity

Squeezing → improved sensitivity 
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High-power effects

At high circulating power:

A few seconds after lock, the cavity often
changes “state” correlating with

• a reduction in circulating power,

• a distortion of the transmitted field,

• higher readout noise.

124 kW ⟷ 4.7 MW/cm&
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High-power effects

At high circulating power:

If disturbed, the cavity often
changes “state” correlating with

• a reduction in circulating power,

• a distortion of the transmitted field,

• higher readout noise.

124 kW ⟷ 4.7 MW/cm&
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Next steps

− Optimise sensitivity in current configuration!
→ Add input mode cleaner to filter out technical laser noise.
→ Add a squeezed light source.

− Understand (and possibly prevent) thermal effects,
readout noise fluctuations and modes in the output field!

Before next 
opening of 

vacuum tank.
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Next steps

− Reduce the detuning of the P- and S-cavity eigenmodes!

− Optimise plane cavity geometry!

After next 
opening of 

vacuum tank.

Before next 
opening of 

vacuum tank.

− Optimise sensitivity in current configuration!
→ Add input mode cleaner to filter out technical laser noise.
→ Add a squeezed light source.

− Understand (and possibly prevent) thermal effects,
readout noise fluctuations and modes in the output field!
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Conclusion
− Axions are highly motivated Dark Matter candidates

− LIDA is an interferometric detector currently operating at 2 neV axion mass

− Reaching sensitivities of 𝟐×𝟏𝟎'𝟏𝟎 𝑮𝒆𝑽'𝟏 at the 95% confidence level. This 
puts LIDA a factor of 8 above the CAST sensitivity level 

− We resonate high optical intensities of 𝟒. 𝟕 𝑴𝑾/𝒄𝒎𝟐

− At high powers, we see changes in a distorted mode, a decrease in circulating 
power and higher readout noise

Thank you!
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More detailed setup

EOM: electro-optic modulator, NPRO: non-planar ring oscillator, PBS: polarising beamsplitter, 
PD: photodetector, PDH: Pound-Drever-Hall, rf: radio-frequency generator



Data split, saved in 
frames

Specify timespan to 
analyse

Grab data, compute 
PSDs

Veto glitches/ noisy 
data

Subtract average 
background

Calibrate to 
𝑊/ 𝐻𝑧

Calibrate to 
𝑔!" 𝐺𝑒𝑉#$ 

Check Cavity status

Simulate response

Experiment/DAQ Inside Pipeline Outside Pipeline

CDS

Readout PDs

Current Data Analysis Pipeline


