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The Migdal effect

o Typically we assume that the electron cloud in an atom move instantaneously with a nuclear recoil

e In reality the electrons take a short amount if time to catch up with the recoiling nucleus

e This can cause ionisation and excitation of the atoms, emission of one or more Migdal electrons
(with very low probability)

e Electronic recoil detection increases the sensitivity of our detectors to light WIMPs

e First described by A. Migdal in 1939 A wigdal, zheT, o, 163-1165 (1930), ZNETF, 11, 207-212 (1941
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The Migdal effect

e The Migdal effect has been observed in:

o « decay v Phys. Rev. C 11 (1975), 1740-1745, Phys. Rev. C 11(1975), 1746-1754
[ ) 6_ decay v Phys. Rev. 93 (1954), 518-523
] B+ decay v Phys. Rev. A 97 (2018), 023402

e However, it has not yet been observed in nuclear scattering, the key process we want to use itin
¢ In fact, recent attempts to measure the effect in nuclear scattering have returned conflicting

results
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e However, it has not yet been observed in nuclear scattering, the key process we want to use it in
¢ In fact, recent attempts to measure the effect in nuclear scattering have returned conflicting
results

o The Migdal In Galactic Dark MAtter ExpLoration experiment aims to make an fﬁ
unambiguous observation of the Migdal effect in nuclear scattering using an
optical time projection chamber

e Two phases:

1. Measure the Migdal effect in pure Carbon tetrafluoride (CF,)
2. Observe the Migdal effect in CF, + other gas (Ar, Xe, ...) mixtures M I G DA L

e Searching for nuclear recoils with accompanying electronic recoils from the \ )
same vertex




The MIGDAL detector: An Optical TPC
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e Neutrons produced using D-D and D-T
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e ITO (Indium tin oxide) anode is transparent,
allowing light to pass through

e Measures the charge produced

e Strips running perpendicular to the
x-direction give information in the x—z
plane
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e ITO (Indium tin oxide) anode is transparent, camera
allowing light to pass through

e CMOS camera records the light produced
in the avalanche

e Measures the charge produced ) ) .
e Gives us animage in the x—y plane
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The MIGDAL detector: An Optical TPC

) e PMT collects light from initial ionisation (S1)
o Neutrons produced using D-D and D-T and from the avalanche (52)
generators with energies of 2.47 MeV and

14.7 MeV, respectively e Gives information about the absolute
z-position of the interaction
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Gas Electron Multipliers

Gas Electron Multipliers are micropattern
gas detectors

Glass sandwiched with copper/nickel (0.57
mm thick glass with 2 um of metal on either
side)

Many tiny holes, 177oum in diameter, 28oum
pitch, 10 cm x 10 cm active area

Voltage applied across dielectric, funnels
electrons through the holes. Strong electric
field inside holes where Townsend
avalanche occurs

We use a double GEM system with a2 mm
gap between them



ITO anode

e 120 Indium tin oxide (ITO) strips
with 60 readout channels allow us
to readout the charge produced

e Strips 0.6 mm wide with a 0.8mm
pitch, 10 cm x 10 cm active area

e Digitised with 2 ns sampling rate

e Charge arrival times give us
information about the depth of the
track in the z-direction

e Crucially, the anode is transparent
so that light produced in the
avalanche can be recorded by the
CMOQOS camera
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MIGDAL @ NILE




e The first science run took place =~ 1 month
ago, from the 17th of July to the 3rd of August 16.75

e Data taken using D-D neutron generator ©

e Lower neutron rate than design for first
commissioning

—
o

e Frames taken with 20 ms exposure time.
Longer than planned due to problems with
camera firmware.

Cumulative recorded DD frames
[millions]

e Data taking interspersed with regular
calibration runs (°>Fe) to monitor the gain of
the detector 0

MIGDAL Preliminary
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e Voltage across GEMs increased by a small Date
amount each day to keep constant gain



Calibration

ITO Integral [Vns]

ITO Resolution [%]
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55Fe calibration performed several times per
day

Energy scale is consistent over the course of
the science run with &~ 20% variation

Resolution in ITO = 20% and comparable with
other readouts (e.g. camera)

Further improvements are expected with
better calibration methods



Example events
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Migdal-like event
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Migdal-like event
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Migdal-like event
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Migdal-like event
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Summary

e The MIGDAL experiment aims to perform an unambiguous
observation the Migdal effect

e First science run took place =~ 1 month ago with DD neutron
source

e Regular calibration runs performed
e Analysis of recorded data underway
e 50% of recorded data is blinded

e Stay tuned for results!

e See experiment paper for more detail:
Astropart.Phys. 151 (2023) 102853
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https://doi.org/10.1016/j.astropartphys.2023.102853
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Signal versus background

Component Topology D-D neutrons D-T neutrons
>0.5 5-15 keV >0.5 5-15 keV
Recoil-induced §-rays Delta electron from NR track origin 20 0 541,000 0
Particle-Induced X-ray Emission (PIXE)
X-ray emission Photoelectron near NR track origin 18 0 365 0
Auger electrons Auger electron from NR track origin 19.6 0 42,000 0
Bremsstrahlung ]:ircu(:ta&sz-sets‘t
Quasi-Free Electron Br. (QFEB) Photoelectron near NR track origin 112 =0 288 =0
Secondary Electron Br. (SEB) Photoelectron near NR track origin 115 =0 279 20
Atomic Br. (AB) Photoelectron near NR track origin 70 =0 171 220
Nuclear Br. (NB) Photoelectron near NR track origin =l 1] 0.013 =0
Neutron inelastic y-rays Compton electron near NR track origin 16 0.47 0.86 0.25
Random track coincidences
External - and X-rays Photo-/Compton electron near NR track 2 =0 2 =0
Trace radioisotopes (gas) Electron from decay near NR track origin | 0.2 0.01 0.03 20
Neutron activation (gas) Electron from decay near NR track origin 0 0 = =0
Muon-induced §-rays Delta electron near NR. track origin =0 =0 3 =0
Secondary nuclear recoil fork NR track fork near track origin - =1 - =1
Total background Sum of the above components 1.5 1.3
Migdal signal Migdal electron from NR track origin 32.6 84.2

T These processes were evaluated at the endpoint of the nuclear recoil spectra.
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e We can exploit different track lenghts and dE/dx to distinguish nuclear and electronic recoils

o Nuclear recoils deposit more of their energy at the beginning of the track, while electrons deposit
more energy at the end of the track



Gas properties
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e Gas properties for CF, at 50 Torr, calculated with Magboltz

e Electric fields chosen to minimize diffusion and attachment



End-to-end simulation

Electrons per pixel
102

e We have a full end-to-end simulation
combining:

e DEGRAD

e SRIM/TRIM

o Garfield++

[ ]

[ ]

Magboltz
Gmsh/Elmer & ANSYS
e Plots show Migdal-like events with a 250 keV
NR and a 5 keV ER

e Studying various methods to identify Migdal
events (dE/dx, track lengths, etc)

e Currently estimate ~ 75% Migdal
identification efficiency for the most
promising energies
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e We have a full end-to-end simulation
combining:
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