

European Physical Society

Conference on High Energy Physics 21-25 August 2023

CMS results on flavor spectroscopy

Priyanka Sadangi (National Institute of Science Education and Research, India) On behalf of the CMS collaboration

23/08/2023

Outline

Recent results in spectroscopy from the CMS collaboration.

- \rightarrow Observation of $\Xi_{\rm b}(6100)^{-}$ baryon
- → Observation of $\Lambda_b^{\ 0}$ → $J/\psi \Xi^- K^+$ decay
- → Observation of η → 4 μ decay
- → Observation of new structure in the $J/\psi J/\psi$ mass spectrum

Observation of $\Xi_{\rm b}(6100)^{-}$ baryon

• The LHCb Collaboration reported the observation,

$$\Xi_{\rm b}$$
 (6227) $^- \to \Lambda_{\rm b}^{\ 0}$ K $^-$ and $\Xi_{\rm b}^{\ 0}$ π^- [Phys. Rev. Lett. 121], $\Xi_{\rm b}$ (6227) $^0 \to \Xi_{\rm b}^{\ -}$ π^+ [Phys. Rev. D 103]

- CMS search for Ξ_b^- excited states with 2016+2017+2018 data (140 fb⁻¹) in the $\Xi_b^-\pi^+\pi^-$ invariant mass spectrum.
- The ground state Ξ_b^- is reconstructed via $J/\psi \Xi^-$ and $J/\psi \Lambda K^-$, where, $J/\psi \to \mu^+ \mu^-$, $\Xi^- \to \Lambda \pi^-$, and $\Lambda \to p\pi$.
- Invariant mass of J/ $\psi \Xi^-$ (left) and J/ $\psi \Lambda K^-$ (right). J/ $\psi \Sigma^0 K^-$ partially reconstructed background.

$\Xi_{\rm b}^{-}$ PDG - 5797.0 ± 0.6 MeV

$J/\psi \Xi^-$

Model - Double Gaussians + 1st order polynomial Yield - 859 ± 36

mass - 5797.0 \pm 0.7 MeV (left)

$J/\psi \Lambda K^-$

Model - Double Gaussians + Exponential

J/ψ Λ K⁻ Yield - 815 ± 74 J/ψ Σ⁰ K⁻ Yield - 820 ± 158 mass - 5800.1 ± 1.2 MeV (right)

Continue...

Distributions of the invariant mass difference ΔM for the selected $\Xi_b^-\pi^+\pi^-$ candidates, with the Ξ_b^- reconstructed in the J/ ψ Ξ^- and J/ ψ Λ K⁻ channels (left) or partially reconstructed in the J/ ψ Σ^0 K⁻ channel (right).

Results:

The first observation of Ξ_b^{**} beauty-strange baryon.

Natural width of this resonance is compatible with zero and a 95% confidence level upper limit of 1.9 MeV.

Fit is relativistic Breit-Wigner convoluted with resolution.

Fitted mass difference of the new $\Xi_{\rm b}(6100)$ state –

$$\Delta M_{\Xi b(6100)-}$$
: 24.14 ± 0.22 MeV.

Yield: 26 ± 7 (fully reconstructed) and 34 ± 9 .

$$M(\Xi_{\rm b}(6100)^-) - M(\Xi_{\rm b}^-) - 2 \, m_{\pi^{\pm}}^{\rm PDG} = 24.14 \pm 0.22 \, ({\rm stat}) \pm 0.09 \, ({\rm syst}) \, {\rm MeV}$$

A 13 MeV mass increase places $\Xi_b(6100)^-$ above $\Lambda_b^{\ 0}$ K⁻ threshold, could have been enabled the potential decay to $\Lambda_b^{\ 0}$ K⁻ state.

Observation of $\Lambda_b^{\ 0} \rightarrow J/\psi \Xi^- K^+$ decay

- LHCb Collaboration identified significant J/ ψ p structures in Λ_b^0 decaying to J/ ψ pK⁻, marking exotic baryon spectroscopy breakthrough.
- Hidden-charm pentaquarks seen in J/ ψ p and J/ ψ Λ systems only.
- Exploring heavier baryon channels (e.g., Ξ^- and Ω^-) might unveil doubly or triply strange pentaquark states.
- CMS search for the $\Lambda_b^{\ 0} \to J/\psi \Xi^- K^+$ decay with 2016+2017+2018 data (140 fb⁻¹), where the $J/\psi \to \mu^+ \mu^-$, $\Xi^- \to \Lambda \pi^-$, and $\Lambda \to p\pi$ channels are used to reconstruct the intermediate decay products.

Normalization channel - $\Lambda_{\rm h}^{\ 0} \rightarrow \psi$ (2S) Λ

(similar decay topology and kinematics to the signal decay, can reduce systematic uncertainties)

Model - Student-T function for signal, Exponential for background

$$m(\Lambda_b^{\ 0}) = 5619.3 \pm 0.3$$
 MeV, Yield = 1744 ± 63

Continue...

A narrow peak at the $\Lambda_b^{\ 0}$ mass is observed with $J/\psi\Xi^-K^+(>5\sigma)$. The 1st observed multibody decay containing the $J/\psi\Xi^-$ system.

Model - Student-T function for signal with mass and σ floating, but the n parameter fixed to the value found by fitting the simulation because of the limited signal yield, Exponential for background.

m($\Lambda_b^{\ 0}$) = 5625.9 \pm 3.2 MeV, agrees with the world-average value of

 5619.60 ± 0.17 MeV, Yield = 46 ± 11 .

Limited sensitivity to pentaquark due to low signal yields.

The Branching ratio is measured as:

$$\mathcal{R} \equiv rac{\mathcal{B}(\Lambda_{
m b}^0
ightarrow {
m J}/\psi \Xi^- {
m K}^+)}{\mathcal{B}(\Lambda_{
m b}^0
ightarrow \psi(2{
m S})\Lambda)} = [2.5 \pm 0.8\,{
m (stat)} \pm 0.9\,{
m (syst)}]\%$$

- η and η ' mesons with masses of 547.9 MeV and 957.8 MeV, composed of up, down, and strange quark admixtures.
- Several properties of the η and η ' are not measured. e.g. leptonic radiative decays, Dalitz decays.
- Dalitz decays involve electromagnetic coupling of pseudoscalar mesons to photons.
- Observed leptonic radiative decays : $\eta \to \mu^+ \mu^-$, $\eta \to e^+ e^- e^+ e^-$, $\eta' \to e^+ e^- e^+ e^-$.
- Remaining elusive : $\eta \rightarrow e^+e^-$, $\eta \rightarrow \mu^+ \mu^- \mu^+ \mu^-$, $\eta \rightarrow e^+e^-\mu^+ \mu^-$, most η ` decays.

- $\bullet \qquad \eta \to \mu^+ \, \mu^- \, \mu^+ \, \mu^-$
 - Rare decays offer precision tests of the standard model and sensitivity to new physics scenarios.
 - SM Predicted branching fraction: $(3.98 \pm 0.15) \times 10^{-9}$ Chinese Phys. C 42 (2018) 023109.
 - CMS reports first observation of $\eta \to \mu^+ \mu^- \mu^+ \mu^-$ decay.
 - High-rate triggers in CMS extend sensitivity to dimuon and four-muon resonances.
 - Improved precision by five orders of magnitude compared to previous methods.
 - Data 2017 and 2018, corresponding to an integrated luminosity of 101 fb^{-1} .

- Clear peak with around 50 events (5σ significance) with data collected in 2017-2018 with 101 fb⁻¹ integrated luminosity.
- First-ever observation of $\eta \to \mu^+ \mu^- \mu^+ \mu^-$ decay.
- Fit conducted with Model Crystall-Ball + threshold model.
- Branching fraction measurement Utilizing normalization from $\eta \to \mu^+ \, \mu^-$ decay, measured branching fraction $B(\eta \to \mu^+ \, \mu^- \mu^+ \, \mu^-)$.

$$\begin{split} \frac{\mathcal{B}_{4\mu}}{\mathcal{B}_{2\mu}} &= (0.86 \pm 0.14 \, (\text{stat}) \pm 0.12 \, (\text{syst})) \times 10^{-3} \\ \mathcal{B}(\eta \to 4\mu) &= (5.0 \pm 0.8 \, (\text{stat}) \pm 0.7 \, (\text{syst}) \, \pm 0.7 \, (\mathcal{B}_{2\mu})) \times 10^{-9} \end{split}$$

The measurement is in agreement with the theoretical prediction of $(3.98 \pm 0.15) \times 10^{-9}$, Chinese Phys. C 42 (2018) 023109

Observation of new structures in $J/\psi J/\psi$ mass spectrum

In 2020, the LHCb Collaboration found a distinct structure in the J/ ψ J/ ψ channel – peak at X (6900). [LHCb], confirmed by the ATLAS experiment [ATLAS].

CMS report on the $J/\psi J/\psi$ invariant mass spectrum, using a dataset representing 135 fb⁻¹ of integrated luminosity at a

center-of-mass energy of 13 TeV.

Major backgrounds - NRSPS and DPS components - shape from simulated events.

Signal - Relativistic Breit-Wigner functions convolved with resolution functions.

Three resonances structures observed to be statistically significant!

X(6550): 6.5 σ (BW1), X(6900): 9.4 σ (BW2), X(7300): 4.1 σ (BW3)

X (6900) structure observed by LHCb is confirmed with a mass of 6927 ± 9 (stat) ± 4 (syst) MeV.

	BW_1	BW_2	BW_3
m [MeV]	$6552\pm10\pm12$	$6927 \pm 9 \pm 4$	$7287^{+20}_{-18} \pm 5$
Γ [MeV]	$124^{+32}_{-26}\pm33$	$122^{+24}_{-21}\pm18$	$95^{+59}_{-40} \pm 19$
N	470^{+120}_{-110}	492^{+78}_{-73}	156^{+64}_{-51}
	Γ [MeV]	m [MeV] $6552 \pm 10 \pm 12$ Γ [MeV] $124^{+32}_{-26} \pm 33$	m [MeV] $6552 \pm 10 \pm 12$ $6927 \pm 9 \pm 4$ Γ [MeV] $124^{+32}_{-26} \pm 33$ $122^{+24}_{-21} \pm 18$

Continue...

- The dips around 6750 and 7150 MeV in the data lack accurate description.
- LHCb's interference model doesn't fit our data effectively.
- Including interference terms between the three resonances improved the fit, dips are well described and leads to resonance parameter shifts compared to no interference fit.

Interference $m \, [\text{MeV}]$ 6638^{+43+16}_{-38-31} 6847^{+44+48}_{-28-20} 7134^{+48+41}_{-25-15} $\Gamma \, [\text{MeV}]$ $440^{+230+110}_{-200-240}$ 191^{+66+25}_{-49-17} 97^{+40+29}_{-29-26}

Summary

- First observation of a new excited beauty strange baryon, $\Xi_{\rm b}^{-}$ (6100).
- First observation of $\Lambda_b^{\ 0} \to J/\psi \Xi^- K^+$ decay.
- First observation of $\eta \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ decay.
 - the measured Branching fraction is consistent with SM.
- With J/ ψ J/ ψ study we confirm X(6900), and new structures are found with mass 6552 ± 10 (stat) ± 12 (syst) MeV and mass 7287 ± 18 (stat) ± 5 (syst) MeV with 6.5σ , and 4.1σ respectively.

Stay tuned with CMS!