Observation of **antihelium** and **antihypertriton** in pp collisions with LHCb Hendrik Jage on behalf of the LHCb collaboration

EPS-HEP2023 conference 21-25 August, Hamburg

Bundesministerium für Bildung und Forschung

......

I.PI I. Physikalise Institut

AMS-02: Antihelium in Space

- Reported $\mathcal{O}(10)$ He candidates in Cosmic Rays at conferences
- Origin is unclear: AMS never reported \overline{d} observation

• If AMS-02 results are confirmed: **New source** of He required

• $\overline{\Lambda}_b^0$ decays: ³He production enhanced with respect to \overline{d}

LHCb not designed for helium identification
⇒ Use information from the tracking system

•
$$\mathcal{L}_{int} = 5.5 \, \text{fb}^-$$

dE/dx measurements

Likelihood Discriminators

First helium identification at LHCb!

Converted photons

Timing information from Outer Tracker

()

10

20

- Straw drift tube detector
- OT has a constant threshold \Rightarrow Does **not measure** dE/dx information
- But: Z=2 crosses threshold earlier

 \Rightarrow Identification power via "OT track time" • Low momentum: Time Of Flight

 \Rightarrow Helium ID after magnet in **full acceptance**

30 40 50

LHCb-DP-2023-002, in preparation

0.1

0.01

10⁻³

100

p[GeV]

LHCb-DP-2023-002, in preparation

Sources of helium

 6×10^4 helium and 5×10^4 anti-helium **prompt** tracks

Hypertriton

- Access to hyperon-nucleon interaction \Rightarrow Implications for **neutron stars**
- Hypertriton "life-time puzzle":
 - Tension between STAR and ALICE

- Access to hyperon-nucleon interaction \Rightarrow Implications for **neutron stars**
- Hypertriton "life-time puzzle":
 - Tension between STAR and ALICE

Selection

- 2-body decay into helium: $^{3}_{\Lambda}\mathrm{H} \rightarrow {}^{3}\mathrm{He}\,\pi^{-}$
- Secondary helium candidates (not from PV): $\ln \chi^2_{\rm IP}({}^{3}{\rm He}) > 2$
- Combine with charged pion
- Well reconstructed secondary vertex

Antihypertriton candidate in VELO

[LHCb-CONF-2023-002] **Observation of (anti)** hypertriton Candidates / 2 MeV 07 07 LHCb preliminary $\frac{3}{\Lambda}\overline{H}$ LHCb preliminary Data 5.5 fb^{-1} Data 5.5 fb^{-1} Signal Signal Background Background Same-sign data Same-sign data 3000 3020 3040 3060 Ž960 2980 3000 3020 3040 3060 $m(^{3}\text{He}\,\pi^{-})$ [MeV] $m({}^{3}\overline{\text{He}}\pi^{+})$ [MeV] • Fit results: • Under investigation:

• Yields: Preliminary $N(^{3}_{\Lambda}\mathrm{H}) = 61 \pm 8$ $N(\frac{3}{4}\overline{\mathrm{H}}) = 46 \pm 7$

Candidates / 2 MeV 07 07

0 Ž960

 $^{3}_{\Lambda}$ H

2980

Statistical mass precision: $0.16 \,\mathrm{MeV}$

• Systematic corrections on mass scale: Charge-sign dependent energy-loss and **tracking** corrections for Z=2**Efficiency** and acceptance corrections

Summary

- LHCb is now able to identify helium in Run2
 - dE/dx, timing and Cherenkov based method $\exists capacity capacity$
- 1.1×10⁵ prompt (anti)helium in *pp* collisions
 - Negligible background contamination
 - In experimentally unexplored **forward region**
- 107 ± 11 (anti)hypertriton candidates

• Measure helium production from Λ_b^0

• LHCb-CONF-2023-002, on CDS

LHCb detector Run 3

Λ_{LD} : No strong dependence on kinematics

Prompt helium and antihelium

Λ_{LD}^{VELO} separated by charge and preselection

LHCb-DP-2023-002, in preparation

Data and simulation comparison

Helium in minimum bias data

Observe in 2×10^9 tracks a displaced population of 54 at large Λ_{LD}

LHCb-DP-2023-002, in preparation

LHCb skimming stage

• Run2 pp data from two different preselections

