

Searches for new physics with the FASER experiment

EPS-HEP 2023

21-25 August 2023

Jack C. MacDonald on behalf of the FASER collaboration

What is FASER?

- → New experiment at the LHC built and installed in 2019-2021
 - Successful data taking in June-Nov 2022 and April-August 2023

Google Earth, imagery (c)2023 Maxar Technologies, map data (c)2023; CERN; adapted by APS/Alan Stonebraker

- → Targets light and weakly interacting particles
- → ~7 m x 25 cm x 30 cm detector
- → ~480 m downstream of ATLAS IP
- → On collision axis line-of-sight

See also <u>Florian's talk</u> tomorrow

ATLAS forward region

The FASER detector

The FASER detector

FASER operations

→ Continuous and largely automatic data taking in 2022

- Up to 1.3 kHz trigger rate
- More than 350M single muon events recorded
- → Recorded <u>96.1%</u> of delivered luminosity
 - Limited by DAQ deadtime (1.3%) and a couple of crashes
 - Dark photon analysis uses 27.0 fb⁻¹ (with optical filters)

Dark photons at FASER

- → Dark photons are a general feature of "hidden sector" models
 - Weakly coupled to SM with strength determined by kinetic mixing, ε

$$\mathcal{L} \supset rac{1}{2} m_{A'}^2 A'^2 - \epsilon e \sum_f q_f A'_\mu \, \bar{f} \gamma^\mu f$$

→ FASER most sensitive to parameter space with $m_{A'} \sim 10 - 100$ MeV and $\varepsilon \sim 10^{-5} - 10^{-4}$

$$L = c\beta\tau\gamma \approx (80 \text{ m}) \left[\frac{10^{-5}}{\epsilon}\right]^2 \left[\frac{E_{A'}}{\text{TeV}}\right] \left[\frac{100 \text{ MeV}}{m_{A'}}\right]^2$$

- $\pi^0 \rightarrow A' \gamma$ dominant production mechanism
- $m_{A'} < 2 m_{\mu} \Rightarrow BR(A' \rightarrow e^+e^-) \sim 100\%$

Dark photon modelling

- → Dark photon signal events modelled using FORESEE <u>arXiv:2105.07077</u>
 - EPOS-LHC used to model very forward π⁰ and η production
 - Also includes subdominant dark-bremsstrahlung contribution
- → Systematic uncertainties from signal modelling are the dominant contribution
 - Mainly from forward hadron production
 - Envelope from parameterised difference between EPOS-LHC and QGSJET/SIBYLL

Dark photon event selection

→ Simple event selection optimised for discovery

- Require LHC collision event with good quality data
- Blind data with no veto signal and E_{calo} > 100 GeV
- → Find ~40% signal selection efficiency over parameter space FASER is sensitive to

- → Veto station inefficiency
 - Measured layer-by-layer with muon tracks pointing to veto layers
 - Layer efficiency > 99.9997%
 - With 5 layers reduce expected 10⁸ muons to negligible level
 - 0 events expected

Dark photon backgrounds - II

- → Non-collision backgrounds
 - Cosmics measured in runs without beam
 - Nearby beam debris measured in non-colliding bunches
 - No events observed with ≥ 1 track or E_{calo} > 500 GeV
 - 0 events expected

Dark photon backgrounds - III

- → Neutrinos (main background)
 - Mostly from interactions in the timing layer
 - Estimated using 300 ab⁻¹ GENIE simulation
 - Uncertainties from flux and interaction modelling
 - 1.5 x 10⁻³ events expected

Dark photon backgrounds - IV

→ Neutral hadrons

- From upstream muons interacting in the rock in front of FASER
- Heavily suppressed since:
 - The muon typically continues through FASER and so is vetoed
 - The neutral hadron must pass through 8 interaction lengths before decaying
 - The decay products must have high energy
- Estimated by extrapolating events with 2 or 3 tracks and different veto conditions
- 0.84 x 10⁻³ events expected

Background	Central Value	Error (%)
Veto inefficiency	-	-
Non-collision	-	-
Neutral hadrons	0.84×10^{-3}	$1.19 \times 10^{-3} (141\%)$
Neutrinos	1.5×10^{-3}	$2.0 \times 10^{-3} (133\%)$
Total	$2.33 imes \mathbf{10^{-3}}$	$2.32\ imes \mathbf{10^{-3}}\ (\mathbf{99\%})$

Unblinded results

Limit setting

→ No events seen in unblinded SR

- Set (90% CL) limits in previously unprobed parameter space
- Excludes region relevant for dark matter thermal relic target
- Result reinterpreted in terms of B-L model

Summary

- → FASER successfully took data throughout first year of Run 3
 - Detector fully functional with high efficiency
- → Constraints on previously unexplored dark photon / B-L parameter space
 - Includes exclusion of interesting thermal relic region
- → 10x more LHC Run 3 data to look forward to
 - Recorded an additional ~30 fb⁻¹ of data
 - New searches, e.g. ALPs and other multiphoton signatures underway
- → Large upgrade to FASER planned for HL-LHC
 - Part of Forward Physics Facility <u>arXiv:2203.05090</u>
 - Significant improvement in sensitivity expected

Thank you for your attention!

Backup

A CONTRACTOR OF THE OWNER

CMU 2t

Dark photon selection

Description	Value	
Pre-selecton		
Time consistent with a colliding bunch identifier		
Timing scintillator trigger		
Scintillator		
Timing station:		
Top or Bottom Scintillator charge	$> 70 \ {\rm pC}$	
OR Top and Bottom charge	$> 30 \ {\rm pC}$	
Each Pre-shower scintillator charge	>2.5 pC	
Each Veto scintillator charge	$<\!40~{ m pC}$	
Tracking		
Exactly 2 Good Tracks		
Momentum	$> 20 { m GeV}$	
χ^2/NDF	< 25	
Number of tracker layers on track	>= 7	
Number of tracker hits on track	>= 12	
Fiducial selection		
Track extrapolated to all scintillators		
and tracking stations	$< 95 \mathrm{mm}$	
Calorimeter		
Calorimeter energy (sum of four channels)	> 500 GeV	

Selection Criteria	Efficiency
Good collision event	99.7%
No Veto Signal	99.7%
Timing+Preshower Signal	97.9%
$\geq 1~{\rm good}~{\rm track}$	91.6%
= 2 good tracks	57.3% *
Track radius $<95~\mathrm{mm}$	51.8% *
Calo E > 500 GeV	50.8% *

 $\epsilon = 3 \times 10^{-5} \text{ m}_{A'} = 25.1 \text{ MeV}$

*scaled down by 7%
following data-driven
estimate of two-track
tracking efficiency

	Data	
Cut	Events	Efficiency
Good collision event	151231009	-
No Veto Signal	1250092	0.827%
Timing + Preshower Signal	332549	0.220%
$\geq 1 \ {\rm good} \ {\rm track}$	22224	0.015%
= 2 good tracks	0	0.000%
Track radius $<95~\mathrm{mm}$	0	0.000%
Calo E > 500 GeV	0	0.000%

Selection	Nevents $E < 100 GeV$	Nevents $E > 500 GeV$
3 tracks (VetoNu signal)	404	19
2 tracks (No VetoNu signal)	1	Predicted: 0.047

Source	Value	Effect on signal yield
Signal Generator	$\frac{0.15 + (E_{A'}/4\text{TeV})^3}{1 + (E_{A'}/4\text{TeV})^3}$	15-65% (15-45%)
Luminosity	2.2%	2.2%
MC Statistics	$\sqrt{\sum W^2}$	1-3%~(1-2%)
Track Momentum Scale	5%	< 0.5%
Track Momentum Resolution	5%	< 0.5%
Single Track Efficiency	3%	3%
Two-track Efficiency	7%	7%
Calo E scale	6%	$0-8\% \ (< 1\%)$

Dark photon limits

Thermal relic target

B-L at FASER

- → Accidental conservation of B and L in SM suggests new local symmetries
 - U(1)_{B-I} gauge symmetry is one well-motivated example
 - Associated with B-L boson, coupled to SM with strength g_{B-L}

$$\mathcal{L} \supset \frac{1}{2} m_{A'_{B-L}}^2 A'^2_{B-L} - g_{B-L} \sum_f Q^f_{B-L} A'^{\mu}_{B-L} \bar{f} \gamma_{\mu} f$$

- → FASER sensitivity constrained to mass range $2 m_e < m_{A'} < 2 m_u \sim 211 \text{ MeV}$
 - Light meson decays and dark bremsstrahlung dominant production modes
 - Can decay to electrons, SM neutrinos, and possibly sterile neutrinos
 - Assume decays to sterile neutrinos kinematically inaccessible
 - $BR(A'_{B-L} \rightarrow e^+e^-) \sim 40\%$

B-L limits

84 members from 24 institutions and 10 countries

Acknowledgements

