

Hadron Production at LHCb Experiment

Saliha Bashir AGH-University of Krakow, Poland on behalf of LHCb Collaboration

European Physical Society, Conference on High Energy Physics 21-25 August 2023

<u>Outline</u>

- The LHCb Detector
- Cold Nuclear Matter
- QCD at LHCb
- Latest QCD Analyses
 - Measurement of $b\bar{b}$ and $c\bar{c}$ -dijet differential cross-sections in the forward region of collisions at $\sqrt{s} = 13$ TeV. (JHEP 2102 (2021) 023)
 - Nuclear modification factor of neutral pions in the forward and backward regions of *pPb* collisions. (Phys.Rev.Lett. 131 (2023) 4, 042302)
- Conclusions

The LHCb Detector

Physics at LHCb

- Matter-antimatter asymmetry
- CP Violation and rare decays of beauty and charm meson
- QCD, electroweak, exotica ...

- Rapidity range 2< η < 5 : ~40% of heavy quarks produced hits the detector acceptance
- VELO : Decay time resolution ~45 fs
- Data Taking Efficiency : 90%
- Relative Track Momentum Resolution : 0.5% at low momentum, 1.0% at 200 GeV/c
- Track Reconstruction Efficiency : ~ 96 % for long tracks
- Calorimeters : ECAL, HCAL, $\Delta E/E = 1\% + 10 / \sqrt{E}[GeV]$ for ECAL
- High Quality Particle Identification

https://lhcb.web.cern.ch/speakersbureau/html/PerformanceNumbers.html

Cold Nuclear Matter

 The experiments at high energy, especially those at collider energies at RHIC and the LHC at are designed to search for phase transitions from normal matter to a deconfined quark-gluon plasma.

Cold Nuclear Matter

- There are other mechanisms that can mimic some of the effects of the deconfinement phase transition that do not involve quark-gluon plasma production.
- The way to separate these 'cold nuclear matter' effects from those of the deconfined media is to study other, smaller collision systems.
- Deviations from the pp baseline in p+Pb and Pb+Pb collisions have been typically been quantified by ratios of observables in the heavy systems to the light system, such as the nuclear modification factor:
- At low-x gluon density becomes very large and a non-linear evolution regime with 2-> 1 gluon processes sets in at saturation scale Q
 - CGC is an effective theory for that regime
- More saturation at Lower x
- Lower $x \rightarrow$ forward rapidity
- Forward rapidity \rightarrow

Cold Nuclear Matter

- There are other mechanisms that can mimic some of the effects of the deconfinement phase transition that do not involve quark-gluon plasma production.
- The way to separate these 'cold nuclear matter' effects from those of the deconfined media is to study other, smaller collision systems.
- Deviations from the pp baseline in *pPb* and *PbPb* collisions have been typically been quantified by ratios of observables in the heavy systems to the light system, such as the nuclear modification factor:
- At low-x gluon density becomes very large and a non-linear evolution regime with 2→1 gluon processes sets in at saturation scale *Q*.
 - CGC is an effective theory for that regime
- More saturation at Lower x
- Lower $x \rightarrow$ forward rapidity
- Forward rapidity → LHCb

EPS-HEP 2023

S.Bashir

LHCb Detector and QCD

LHC 8 TeV Kinematics

You can study QCD in the LHCb acceptance:

- LHCb allows to test perturbative QCD (pQCD) predictions in a phase space (2< η < 5) complementary to other experiments
- Parton Distribution Functions (PDFs) are a fundamental input for LHC experiments
 - Must be determined from experiments!
- PDFs and proton structure can be studied in two different kinematic regions:
 - At high x values, comparison with other experiment

At low x values and high Q^2 , unexplored by other experiments

• Also, at LHCb both **pp collisions** and **heavy ions**!

JINST 3 (2008) S08005, INT. J. MOD: PHYS. A 30, 1530022 (2015), CERN-LPCC-2018-04

$b\bar{b}$ - and $c\bar{c}$ -dijet: Motivation and selection criteria

Motivation

- In collisions at LHC, bottom and charm quarks are mostly produced in pairs.
- As bb- and cc dijet differential cross-sections can be calculated in perturbative QCD (pQCD) as a function of the dijet kinematics, comparisons between data and predictions provide a critical test of nextto-leading-order (NLO) pQCD calculations.
- This is the first inclusive, direct measurement of $c\bar{c}$ differential cross section at a hadron collider
- The jet tagging system takes advantage of the LHCb features (precise vertex reconstruction)
- A jet is identified to be generated from a b or a c quark(b-jet or c-jet).
- Two Boosted Decision Trees are used to identify b and c jets.
 - BDT(bc|q): to separate heavy flavor jets from light jets
 - BDT(b|c): to separate b-jets from c-jets

Fit to combination of two MVA discriminators (BDTs) t_0 and t_1 to get flavor composition:

 $t_0 = BDT_{bc|q}(j_0) + BDT_{bc|q}(j_1)$ $t_1 = BDT_{b|c}(j_0) + BDT_{b|c}(j_1)$

S.Bashir

$b\bar{b}$ - and $c\bar{c}$ -dijet: Differential cross-sections

• The cross-section is evaluated using:

$$\frac{d\sigma}{dz} = \frac{1}{\mathcal{L}} \frac{1}{2\Delta z(i)} \frac{1}{A(i).\epsilon(i)} \sum_{i=1}^{n} U_{ij}.N(j)$$

where,

- z is the variable under study at generator level
- \mathcal{L} is the integrated luminosity
- $2\Delta z(i)$ is the width of the bin
- i is the index of the bin
- A(i) is the acceptance factor for the bin
- $\epsilon(i)$ is the efficiency of the bin ($\epsilon_{tot} = \epsilon_{reco}$. ϵ_{tag} . ϵ_{trig})
- U_{ij} is the unfolding matrix that maps reconstructed to generator level variables
- N(j) is the number of the fitted events in the bin
- $b\overline{b}$ and $c\overline{c}$ differential cross-sections measured with 2016 data.
- The differential cross-section as a function of leading jet η , p_T , Δy^* and m_{jj} is presented.
- The measurements are slightly below the predictions, with uncertainties within 1-2 σ .
- The measurements are also compared with simulations from Pythia and a MC@NLO.

8/24/2023

Pythia: arXiv:2203.11601 [hep-ph]

JHEP 02 (2021) 023

10

$b\overline{b}$ - and $c\overline{c}$: Differential cross-sections ratios

- The total $b\bar{b}$ -dijet and $c\bar{c}$ -dijet cross-sections and their ratio in the fiducial region, compared with the NLO predictions.
- The R measurements are compatible with the prediction within its uncertainties.
- The total cross-sections and R are compatible with the prediction from Madgraph5 aMC@NLO + Pythia within its uncertainty.

$$R = \frac{\sigma(pp \to c\bar{c} - dijet X)}{\sigma(pp \to b\bar{b} - dijet X)} = 1.37 \pm 0.27$$

EPS-HEP 2023

S.Bashir

Nuclear Modification Factor of π^0

Motivation

- Neutral pion production is an important probe of nuclear effects in heavy ion collisions.
- In proton-lead (*pPb*) collisions, π^0 production is particularly sensitive to cold nuclear matter (CNM) effects.
- First π^0 result in forward rapidity at LHC.
- Measurements of π^0 production in pPb collisions at forward and backward rapidities with the LHCb detector can provide constraints on nuclear PDFs helping identify the parton saturation effects

• Typical x between 10^{-6} and 10^{-1}

$$R_{pPb} = rac{1}{A} rac{d\sigma_{pPb}/dp_T}{d\sigma_{pp}/dp_T}$$

Selection Criteria

- π^0 candidates are obtained from decays to pair of photons $\pi^0 \rightarrow \gamma^{cnv} \gamma^{cal}$
- This analysis measures the nuclear modification factor of π^0 meson production in *pPb at* $\sqrt{s} = 8.16 TeV$.
- The measurement is performed for:
 - $1.5 < p_T < 10 \ GeV$
 - $2.5 < \eta_{CM} < 3.5 \text{ and } -4.0 < \eta_{CM} < -3.0$
- At least 1 track in VELO and π^0 reconstructed as pairs of photons

Nuclear Modification Factor of π^0 :Interpolation

- The main systematic error comes from the interpolation between pp cross-sections and the π^0 fit model.
- Statistical uncertainties are shown by error bars, while systematic uncertainties are shown by boxes. The pp cross sections are scaled by the atomic mass of the lead ion, A =208.
- The nuclear modification factor shows a Cronin like **enhancement at backward pseudorapidity** and a strong **suppression in the forward pseudorapidity.**
- These measurements are compared to next-to-leading order pQCD calculations
- The enhancement in the backward direction between 2 and 4 GeV is larger than predicted by the pQCD calculation, suggesting that effects not described by NPDFs contribute to the enhancement

Nuclear Modification Factor of π^0

• The main systematic error comes from the interpolation between pp cross-sections and the π^0 fit model.

• Statistical uncertainties are shown by error bars, while systematic uncertainties are shown by boxes. The pp cross sections are scaled by the atomic mass of the lead ion, A =208.

- The nuclear modification factor shows a Cronin like enhancement at backward pseudorapidity and a strong suppression in the forward pseudorapidity.
- These measurements are compared to next-to-leading order pQCD calculations.
- The enhancement in the backward direction between 2 and 4 GeV is larger than predicted by the pQCD calculation, suggesting that effects not described by nPDFs contribute to the enhancement.

Conclusions

LHCb can be considered as a General-Purpose Forward Detector

- Not only flavour physics, QCD and pQCD are tested in a region complementary to ATLAS and CMS.
- The exploration of cold nuclear matter effects advances our understanding of nuclear matter and its behavior under different conditions.

A lot of interesting results (these are just the latest!!)

- Measurement of differential heavy flavour di-jets cross- sections.
- Study of nuclear modification factor for π^0 .
- The measurements of dijet and neutral pion production provide complementary information on the PDFs and nuclear structure, which are important for understanding QCD dynamics in high-energy nuclear collisions and for further improving the theoretical models.

Thank You

for your attention

The LHCb Detector - Upgraded

- New Installation: from subdetectors technologies to the data acquisition domain, from the timing and fast controls distribution to a full-software trigger architecture.
- Five-fold increase in the instantaneous luminosity and pile-up to improve precision in flavour physics observables.

- Rapidity range $2 < \eta < 5$: ~40% of heavy quarks produced hits the detector acceptance
- VELO : Decay time resolution ~45 fs
- Data Taking Efficiency : 90%
- Relative Track Momentum Resolution : 0.5% at low momentum, 1.0% at 200 GeV/c
- Track Reconstruction Efficiency : ~ 96 % for long tracks
- Calorimeters : ECAL, HCAL, $\Delta E/E = 1\% + 10 / \sqrt{E}[GeV]$ for ECAL
- High Quality Particle Identification

https://lhcb.web.cern.ch/speakersbureau/html/PerformanceNumbers.html

SV-Tagging Algorithm

- The SV-tagging algorithm reconstructs secondary vertices (SVs) using tracks inside and outside of the jet
- In this algorithm tracks that have a significant pT and displacement from every PV are combined to form two-body SVs.
- Then good quality two-body SVs are linked together if they share one track, in order to form n-body SVs.
- If a SV is found inside the cone of the jet, the jet is tagged as likely to be originating from b- or c-quark fragmentation

Boosted Decision Tree Classifiers (BDT)

- To further distinguish light-flavour jets from heavy-flavour jets and bjets from c-jets multivariate analysis algorithms are used.
- Two boosted decision tree (BDT) classifiers that use as inputs variables related to the SV, are employed: one for heavy-/light-jet separation (BDT_{bc|q}) and the other for b-/c-jet separation (BDT_{b|c}).

$b\bar{b}$ - and $c\bar{c}$ -dijet: Motivation and selection criteria

Motivation

- In collisions at LHC, bottom and charm quarks are mostly produced in pairs.
- As bb- and cc dijet differential cross-sections can be calculated in perturbative QCD (pQCD) as a function of the dijet kinematics, comparisons between data and predictions provide a critical test of nextto-leading-order (NLO) pQCD calculations.
- This is the first inclusive, direct measurement of $c\bar{c}$ differential cross section at a hadron collider
- The data sample used corresponds to a total integrated luminosity of *pp* collisions of 1.6 fb⁻¹, collected during the year 2016.
- The jet tagging system takes advantage of the LHCb features (precise vertex reconstruction)
- A jet is identified to be generated from a b or a c quark(b-jet or c-jet).
- Two Boosted Decision Trees are used to identify b and c jets.
 - BDT(bc|q): to separate heavy flavor jets from light jets
 - BDT(b|c): to separate b-jets from c-jets

Fit to combination of two MVA discriminators (BDTs) t_0 and t_1 to get flavor composition:

 $t_0 = BDT_{bc|q}(j_0) + BDT_{bc|q}(j_1)$ $t_1 = BDT_{b|c}(j_0) + BDT_{b|c}(j_1)$ Particle flow

 Long tracks, calorimeter clusters and metastable particles are selected as an Inputs

Anti K_T clustering

• Inputs are used to form jets of a given cone radius R =0.5

Jet Four-momentum

•
$$E_{jet} = \sum_{i} E_{i} \vec{p}_{jet} = \sum_{i} \overline{p_{i}}$$

Jet Energy correction

• The jet energy is corrected for detector efficiencies

Algorithm

Jet Reconstruction