
A crash course in using Neural Ratio Estimation:  

Beginner: 
Fit a line to data using a 
neural network 

Intermediate: 
Prove that your inference is 
correct!

Pro:
Do it all for ALP-induced signals 
in γ-ray data (instead of line-fits) 

Simulate data of the form

data 𝒙 = 𝒂𝒙 + 𝒃 + 𝐍𝐨𝐢𝐬𝐞,

and do this for many different values of 𝒂 and 𝒃, 
which are distributed according to some prior 𝒑 𝒂 𝒑(𝒃). 

1.

Use the simulations to train a neural network to classify 
the simulated data according to which true values that 
data “resembles”.   

2.

Hey NN, has this data 
been simulated from 

𝒂=1 and 𝒃=5 ?

Doesn’t look like it, but I 
can’t be sure. I’ll answer with 
a 0.3, on a scale from 0 to 1. 

The neural network’s output can now be directly related 
to the Bayesian posterior, that is, 𝒑 𝒂, 𝒃|𝐝𝐚𝐭𝐚 : 

Output = 0.3 

𝑝 𝒂 = 𝟏, 𝒃 = 𝟓|data =
𝟎. 𝟑

1 − 𝟎. 𝟑
𝑝 𝒂 𝑝(𝒃)

“likelihood ratio trick” [2].

We do this inference process using the python package 
SWYFT [3].

3.

Neural networks can be very efficient at inferring model 
parameters according to the method to the left. 

But studies show that the estimated posteriors 
cannot be trusted blindly to be accurate [4]! 

How to establish the (in)accuracy of the 
estimated posteriors:

1. Draw samples from a posterior estimate for which you know 
the true value of 𝒂, 𝒃 .

2. Define a randomly positioned region 𝜣𝜶 that contains a 
predetermined proportion 𝜶 of the samples. 

        Check if 𝜣𝜶 contains 𝒂, 𝒃 . 

1. Repeat 1. and 2. for many samples of the true value 𝒂, 𝒃 , 
drawing from the prior 𝒑 𝒂 𝒑(𝒃).

This was recently proven (and explained in more detail) 
by Lemos et. al [5].

▪ The γ-ray signal from ALPs is complex, and often 
dominated by statistical noise. 

▪ Modelling the γ-ray signal involves ~15 nuisance 
parameters, introducing extra variation in the signal. 

This makes accurate posteriors more hard-earned than 
for a line-fit. 

Instead of fitting a line, we want to estimate the mass 
𝑚 and coupling to photons 𝑔 of Axion-like particles. 

Our data is the (simulated) γ-ray spectrum of the Perseus 
galaxy cluster, measured by the upcoming telescope CTA [6]. 

What are the challenges?

What is (probably) 
required?

▪ Higher simulation budgets 
to train NNs on

▪ More sophisticated NN-
architectures

Our challenge:

Finding Axion-like Particles (ALPs) 
using cosmic γ-ray data

• ALPs are hypothetical particles which are also 
popular dark matter candidates (review: [1]). 

• They interact with photons in the presence of 
strong magnetic fields

• Their influence may be visible in γ-ray spectra of 
astrophysical sources that feature strong 
magnetic fields. 

• Accurately modelling that influence requires 
knowledge about astrophysical nuisance 
parameters, such as the local magnetic field 
strength and configuration of the source. 

• The large number of nuisance parameters makes 
it computationally impossible to perform the 
integrations involved in a standard Bayesian 
parameter inference, without neglecting our 
uncertainty in many of those parameters. 

The proportion of cases 
where  𝒂, 𝒃 ∈ 𝜣𝜶 is 𝜶, 

for any chosen value of 𝜶.  

The posterior estimate 
is accurate if:
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Example posterior for data simulation with 
𝑚 = 102 𝑛𝑒𝑉 and 𝑔 = 10−9 𝐺𝑒𝑉−1 

• NN trained on 106 simulations
• Using default general-purpose NN of SWYFT-

package [2].
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The spectra are convolved with the preliminary CTA IRF prod3, as a usage case. 
Simulations are made using gammaALPs [7] and gammapy v0.19 [8]. 

No ALPs

𝑚 = 50 neV

𝑔 = 0.5 ×
10−11

GeV

𝑚 = 10 neV

𝑔 = 3 ×
10−11

GeV

Likelihood-free inference 
may allow us to compute 

astrophysics limits that were 

previously incomputable 

⟹

γ -ray events from NGC1275 (usage case)

Randomly 
positioned center
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