Recent charmonium measurements in Pb-Pb collisions with ALICE

Himanshu Sharma, INFN Padova (On behalf of the ALICE Collaboration)

EPS HEP, Hamburg 21-25 August 2023

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 824093

Charmonium production in Pb-Pb collisions

- Excellent probe of the deconfined medium, quark-gluon plasma (QGP), produced in high energy nuclear collisions
 - Dissociation of charmonium states in the hot nuclear medium.
 - **Recombination** of charm and anti-charm quarks

A Rothkopf, Phys.Rept. 858 1-117, T Matsui & H Satz Phys.Lett.B 178 (1986) 416-422

P Braun-Munzinger and J Stachel Phys.Lett. B490 (2000) 196-202, R Thews et al Phys.Rev.C 63:054905

P Braun-Munzinger and J Stachel, Nature volume 448, (2007)

Non-prompt J/ ψ : sensitive to the interaction of b quarks within the medium

Parton's mass dependent energy loss within the medium

⇒ transport properties of the QGP

himanshu.sharma@cern.ch | EPS HEP 2023 ALICE Collaboration | 21.08.2023 | 2/16

Charmonium reconstruction in ALICE

Central barrel detectors 1) ITS

- ⊙ |η| < 0.9
- Tracking
- Primary and secondary B vertex reconstruction

2) TPC

- **⊙** $|\eta|$ < 0.9
- Tracking
- Particle identification

Excellent tracking and PID capabilities down to very low momentum

BR (J/ $\psi \rightarrow \ell^+ \ell^-$) ~ 5.9%

- V0
- $\odot 2.8 < \eta < 5.1 \& -3.7 < \eta < -1.7$
- Trigger
- Collision centrality determination
- Background rejection

Muon spectrometer

- \odot 2.5 < *y* < 4
- Muon trigger
- \odot Muon tracking down to very low $p_{_{\rm T}}$

Other quarkonium talks by:

- <u>D. Mallick</u> on 21.08 at 10:00
- <u>W. Guo</u> on 23.08 at 17:10

Inclusive quarkonium measurements down to $p_{T} = 0$ at mid and forward rapidity

• Prompt and non-prompt J/ ψ separation at midrapidity, down to p_{τ} = 1.5 GeV/c in Pb–Pb collisions

ALICE:Run 1 & 2

himanshu.sharma@cern.ch | EPS HEP 2023 ALICE Collaboration | 21.08.2023 | 3/°

ALICE Collaboration, JINST (2008) S08002

J/ψ production

himanshu.sharma@cern.ch | EPS HEP 2023 ALICE Collaboration | 21.08.2023 | 4/16

Inclusive J/ ψ production

- ullet Modifications observed for inclusive J/ ψ production at mid and forward rapidity
- Production is largely suppressed at high p_{τ}
- Indication of regeneration at low p_{τ} especially in most central collisions
- Models including dissociation and regeneration effects
 - \circ TAMU describes the results in all p_{τ} and centrality ranges
 - \circ SHMc describes the results at low $p_{_{\mathbf{T}}}$, overestimates suppression at high $p_{_{\mathbf{T}}}$

$$R_{\rm AA}(p_{\rm T}) = \frac{1}{\langle N_{\rm coll} \rangle} \cdot \frac{dN_{\rm AA}/dp_{\rm T}}{dN_{\rm pp}/dp_{\rm T}}$$

R_{AA} = 1 ⇒ Pb-Pb behaves as scaled pp
 R_{AA} ≠ 1 ⇒ modifications of the production in Pb-Pb by cold and/or hot nuclear matter

TAMU/Transport: R. Rapp et al: Nucl.Phys.A 943 (2015) 147-158 Transport: P. Zhuang et al: Phys. Rev. C **89**, 054911 SHM/SHMc: A. Andronic et al: Phys. Lett. B797 (2019) 134836

(Non-) prompt J/ψ production

- In peripheral and semi-central collisions, similar modifications for prompt and non-prompt ${\rm J}/\psi$ production
- In the most central collisions, prompt J/ ψ production significantly less suppressed in comparison to non-prompt J/ ψ
 - Indication of large contribution from regeneration for prompt J/ ψ

(Non-) prompt J/ψ production

- Prompt & non-prompt J/ ψ $R_{\Delta\Delta}$ in agreement with ATLAS and CMS measurements in the overlapping p_{τ} ranges
- Similar $R_{_{\Delta\Delta}}$ values for non-prompt J/ ψ and non-prompt D 0
- Non-prompt J/ ψ R_{AA} consistent with models implementing collisional + radiative energy loss for $p_T > 5$ GeV/c
- ullet Prompt J/ ψ $R_{
 m AA}$ described by models including quarkonium dissociation (regeneration at the phase boundary) at high (low) $p_{
 m T}$

CUJET, Shi S et al: Chin.Phys.C 43 (2019) 4, Chin.Phys.C 42 (2018) 10, Diordievic M. et al: arXiv:2110.01544

Vitev et al: arXiv:1906.04186,arXiv:1709.02372 SHMc, Andronic et al: JHEP07 (2021) 035

J/ψ polarization

himanshu.sharma@cern.ch | EPS HEP 2023 ALICE Collaboration | 21.08.2023 | 8/16

Polarization in Pb-Pb collisions

- Particle's spin alignment with respect to a given direction
- Angular distribution of dileptons:

$$W(\cos\theta,\phi) \propto \frac{1}{3+\lambda_{\theta}} \cdot (1+\lambda_{\theta}\cos^2\theta + \lambda_{\phi}\sin^2\theta\cos2\phi + \lambda_{\theta\phi}\sin2\theta\cos\phi)$$

$$(\lambda_{\theta} \ \lambda_{\phi} \ \lambda_{\theta\phi}) \begin{cases} (0,0,0) & \Rightarrow \text{No polarization} \\ (-1,0,0) & \Rightarrow \text{Longitudinal polarization} \\ (+1,0,0) & \Rightarrow \text{Transverse polarization} \end{cases}$$

Large magnetic field (B) and/or angular momentum (L) F. Becattini et al, Phys.

Rev. C 77, 024906, D. Kharzeev et al, Nuclear Physics A, 803

- 0 can affect J/ψ spin alignment w.r.t. to a polarization axis orthogonal to the event plane
- Significant spin alignment observed for light vector mesons 0 (K^* and ϕ), ALICE, Phys. Rev. Lett. 125, 012301

EPS HEP 2023 himanshu.sharma@cern.ch **ALICE Collaboration** 21.08.2023 9/16

Inclusive J/ ψ polarization

First polarization measurement with respect to event plane

• Significant polarization (3.9 σ) at low $p_{\rm T}$ in 30-50% centrality interval

- Significant polarization (3.5σ) observed in 40-60%
- Similar to **K*** and **φ:** maximum polarization in semicentral collisions at low p_{τ} ALICE, Phys. Rev. Lett. 125, 012301

ALI-PUB-52105

EPS HEP 2023

ψ (2S) production

himanshu.sharma@cern.ch | EPS HEP 2023 ALICE Collaboration | 21.08.2023 | 11/16

Inclusive ψ (2S) production

- Larger suppression for ψ (2S) than J/ ψ
 - \circ Sequential suppression in medium at high p_{τ}
- Indication of regeneration at low p_{τ}

- No significant centrality dependence for ψ (2S)
- TAMU is consistent with measurements while SHMc underpredicts results in central collisions

himanshu.sharma@cern.ch | EPS HEP 2023 ALICE Collaboration | 21.08.2023 | 12/1

Inclusive ψ (2S) production

Inclusive ψ (2S)-to-J/ ψ ratio vs centrality

- Larger ratio at LHC than at SPS in central events
- No significant centrality dependence at the LHC
- TAMU describes the ratio while SHMc underestimates it in central collisions

himanshu.sharma@cern.ch | EPS HEP 2023 ALICE Collaboration | 21.08.2023 | 13/16

Summary

himanshu.sharma@cern.ch | EPS HEP 2023 ALICE Collaboration | 21.08.2023 | 14/16

Summary

- J/ ψ production
 - \circ Inclusive and prompt R_{AA} measurements are compatible with an interplay between dissociation and regeneration mechanism, stronger effects in central collisions
 - \circ Non-prompt J/ ψ , consistent with b-quark energy loss at high $p_{_{
 m T}}$
- J/ ψ polarization
 - Significant polarization observed in the event plane reference frame
 - Interpretation of results requires inputs from theoretical models
- ψ (2S) production
 - $\circ \quad \psi$ (2S) more suppressed than J/ $\psi \Rightarrow$ hints at sequential suppression
 - \circ Indication of regeneration at low p_{τ} also for excited charmonium states

himanshu.sharma@cern.ch | EPS HEP 2023 ALICE Collaboration | 21.08.2023 | 15/16

Outlook: LHC Run 3 (2022-2024)

Exciting physics program with many new quarkonium measurements... stay tuned! Increase by **x 50** compared to Run 2 in Pb–Pb collisions

Muon Forward Tracker will enable prompt/non-prompt charmonia separation at forward rapidity (-3.6 $< \eta <$ -2.5) in the dimuon decay channel

Upgraded ITS: Improved impact parameter resolution by factor of 3 (5) in transverse (longitudinal) direction, improved vertexing and tracking precision

Backup

Summary

- J/ ψ production
 - Inclusive and Prompt R_{AA} measurements are compatible with an interplay between dissociation and regeneration mechanism, stronger effects in central collisions
 - Non-prompt J/ ψ , consistent with b-quark energy loss at high $p_{_{\rm T}}$
- J/ ψ polarization
 - Significant polarization observed in the Event-plane reference frame,
 - Interpretation of results requires inputs from the theoretical models
- ψ (2s) production
 - $\circ \quad \psi$ (2S) more suppressed than J/ $\psi \Rightarrow$ hints at sequential suppression
 - \circ Hints at regeneration at low p_{τ} also for excited charmonium states
- Outlook (?):
 - Detector Upgrade,
 - \circ Improved Psi(2s), non-prompt J/ ψ production,

himanshu.sharma@cern.ch | EPS HEP 2023 ALICE Collaboration | 21.08.2023 | 18/16

<Npart> and centrality in Pb-Pb

Centrality	$\langle T_{\rm AA} \rangle ({ m mb}^{-1})$	$\langle N_{ m part} angle$	ALICE Pb-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$, $2.5 < y < 3$, $0 < p_{T} < 12 \text{ GeV}/c$
			$-\frac{\alpha}{1.4}$ ALICE Pb-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}, 2.5 < y < 3, 0 < p_{T} < 12 \text{ GeV/}c$
0-5%	26.08 ± 0.18	383.40 ± 0.57	1.2 Transport (Du and Rapp) Statistical hadronization (Andronic et al.)
0-10%	20.44 ± 0.17	331.20 ± 1.03	1
10-20%	14.4 ± 0.13	262.00 ± 1.15	0.8
20-30%	8.77 ± 0.10	187.90 ± 1.34	0.8
30-40%	5.09 ± 0.08	130.80 ± 1.33	0.6
40-50%	2.75 ± 0.05	87.14 ± 0.93	0.4
50-70%	0.98 ± 0.02	42.65 ± 0.63	0.2 - Inclusive J/ $\psi \to \mu^+\mu^-$
70-90%	0.016 ± 0.001	11.34 ± 0.13	[
8			
			ALI-DER-341769
			50-90% 40-50% 30-40% 20-30% 10-20% 0-10%

himanshu.sharma@cern.ch | EPS HEP 2023 ALICE Collaboration | 21.08.2023 | 19/16

Inclusive J/ ψ production in Pb-Pb collisions

- Modifications observed with respect to pp, at central and forward rapidity
- $R_{\rm AA}$ increases from peripheral to the most central collisions at midrapidity, described by the models including J/ψ dissociation and regeneration mechanism
- R_{AA} exhibits a flat behaviour at forward rapidity

Inclusive J/ ψ production

- Modifications observed for inclusive J/ψ production at mid and forward rapidity
- Suppressed production for p_T > 5 GeV/c ⇒
 Dissociation and energy loss effects at play
- Lower suppression for p_T < 5 GeV/c, in particular at midrapidity compared to forward rapidity \Rightarrow consistent with J/ ψ regeneration
- Models including J/ ψ regeneration throughout the medium evolution (TAMU) or at the phase boundary (SHM), describe the $R_{\rm AA}$ at low $p_{\rm T}$

SHM: Andronic et al: <u>Phys. Lett. B797 (2019) 134836</u> TAMU: Du X and Rapp R: <u>Nucl. Phys. A</u> 943 (2015) 147-158

Nuclear Modification factor

$$R_{\mathrm{AA}}(p_{\mathrm{T}}) = rac{1}{\langle N_{\mathrm{coll}}
angle} \cdot rac{dN_{\mathrm{AA}}/dp_{\mathrm{T}}}{dN_{\mathrm{pp}}/dp_{\mathrm{T}}}$$

R_{AA} = 1 ⇒ Pb-Pb behaves as scaled pp
 R_{AA} ≠ 1 ⇒ modifications of the production in Pb-Pb by medium

himanshu.sharma@cern.ch | EPS HEP 2023 ALICE Collaboration | 21.08.2023 | 21/10

Charmonium Models in Pb-Pb

Comover model

- J/ ψ suppression and dissociation via co-moving
- ullet Partonic/hadronic interaction of J/ ψ with medium
- Dissociation Π density of comovers
- Regeneration Π c quark cross section

 Π = "depends on"

Transport models

- Boltzmann equation
- With dissociation and regeneration effects
- Idea hydrodynamics

TM1 (Rapp et al)

- Dissociation rate Π LQCD inspired binding energy of charmonia
- Regeneration, c quarks reach stat equilibrium after relaxation time of few fm/c

TM2 (Zhou et al)

- Dissociation rate ∏ r² charmonia
- Regenration, same cross section as dissociation, thermalized distribution of c quarks

Charmonium Models in Pb-Pb

SHM

- HQ produced via hard parton scatterings initially
- All J/ ψ melt in medium
- Form bound states at the phase boundary according to thermal weights of the bound state
- Core-corona model, core high density medium (QGP), corona - < 10% density of core, pp like conditions

At higher p_{τ} , lack of description might be related to:

- ullet Underestimate the survived primary J/ ψ yield during QGP phase
- Hydro inspired freezeout hypersurface underestimate the radial flow of c quarks

