Study of the hadron gas phase using short-lived resonances with ALICE

EPS-HEP 21/08/23 Hamburg

Johanna Lömker - Nikhef/Universiteit Utrecht On behalf of the ALICE collaboration

https://www.uni-hamburg.de/uhh/profil/bilder.html - 11/08/23

Status of light-flavour hadronic resonances

Resonance	K *(892) ⁰	Λ(1520)	φ (1020)
Quark composition	ds, ds	uds	ss
τ (fm/c)	~4.1	~12.6	~46.3
Decay channel	ππ	рК	KK
B.R. (%)	~66.6	~22.5 PHYSICAL REVIEW C 99, 024905 (2019)	~49.2
Mass (MeV)	~891	~1519	~1019

ALICE-PHO-GEN-2016-001-2

M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

Short lifetimes study the properties of the hadronic phase in heavy-ion collisions

Evolution of heavy-ion collisions

Hadronic-gas phase between chemical and kinetic freeze-out

 \Rightarrow Duration similar to lifetime of resonance (ϕ (1020) has longer lifetime)

⇒In medium modifications (pp vs. AA)

 \Rightarrow Insights on QCD phase structure (T_{ch} , T_{fo} , μ_B)

Doi: 10.22661/AAPPSbl.2019.29.4.16

Resonances in the hadronic gas phase

) Regeneration

Pseudo-elastic scattering of decay products

⇒ Increases measured yield

II) Rescattering

Elastic scattering of decay products with other hadrons

⇒ Smearing of mass peak (no more reconstruction from invariant mass)

⇒ <u>Decreases</u> measured yield

 \Rightarrow Total yields of K*(892) and ϕ (1020) are sensitive to rescattering and regeneration at low momenta (< 3 GeV/*c*)

Ratios to stable particles study relation of resonance production and lifetime as quark content cancels out

A Large Ion Collider Experiment

Multi-purpose detector with unique particle identification capabilities and tracking down to low momenta

Central barrel detectors

ITS: Silicon detector for tracking and vertexing

TPC: Time Projection Chamber for PID and tracking

TOF: Time-of-flight for PID

V0: Scintillator detector for triggering and multiplicity estimation

Example: Invariant mass reconstruction $\Lambda(1520) \rightarrow pK$

- 1. <u>Mixed-event technique</u>: rejection of combinatorial background
 - Combining unlike-sign p and K tracks from different events with similar characteristics
 - Normalization and correction for mixing distortions through fit to mixed/same-event ratio of like-sign pairs
- 2. <u>Global Fit</u>:
 - Signal convolution of non-rel. Breit-Wigner function with Gaussian detector resolution
 - Residual background ~ Maxwell-Boltzmann
- 3. <u>Corrections of raw yields</u>: HIJING MC simulations with additional Λ (1520) and GEANT3 for transport
 - Decay branching fraction, detector acceptance, reconstruction efficiency, track selection, PID efficiency

Spectral shapes $K^*(892)$ and $\phi(1020)$ in pp

PHYSICAL REVIEW C 106, 034907 (2022)

- **HERWIG** does not describe the data
- **EPOS-LHC** overestimates ϕ and K^{*0} for $p_T > 5$ GeV/*c*
- **PYTHIA** reasonable above 10 GeV/c
 - $K^*(892)^0$ overestimated/underestimated at low/intermediate p_{T}
 - $\mathbf{\phi}(1020)$ overestimated at low and intermediate p_{T}

- Resonance yield increase with collision energy
- Energy ratio increases with *p*_T (saturation ?)
- PYTHIA8 Monash 2013 overestimates yields
- **K**^{*0} described by models within uncertainties
- $\mathbf{\phi}(1020)$ in agreement with models for for $p_{T} < 8 \text{ GeV/}c$

Spectral shapes $K^*(892)$ and $\phi(1020)$ in pp

PHYSICAL REVIEW C 106, 034907 (2022)

- HERWIG does not describe the data
- **EPOS-LHC** overestimates ϕ and K^{*0} for $p_T > 5$ GeV/*c*
- **PYTHIA** reasonable above 10 GeV/c
 - $K^*(892)^0$ overestimated/underestimated at low/intermediate p_T
 - $\mathbf{\phi}(1020)$ overestimated at low and intermediate p_{T}

- Resonance yield increase with collision energy
- Energy ratio increases with p_T (saturation ?)
- PYTHIA8 Monash 2013 overestimates yields
- **K**^{*0} described by models within uncertainties
- $\mathbf{\phi}(1020)$ in agreement with models for for $p_{T} < 8 \text{ GeV/}c$

Spectral shapes $K^*(892)$ and $\phi(1020)$ in Pb-Pb

PHYSICAL REVIEW C 106, 034907 (2022)

- Increasing resonance yields with collision centrality (increasing charged particle multiplicity)
- **HIJING** cannot describe the data over the full p_{T} range
 - **K**^{*0} better approximated in limited p_{T} range for mid-central to peripheral collisions
 - $\phi(1020)$ in agreement with predictions for mid-central collisions for $p_T > 7 \text{ GeV}/c$

- Resonance yield increase with collision energy
- Ratio increases with p_T (saturation !) for central and peripheral collisions
- $\mathbf{\phi}(1020)$ yield at $\sqrt{s} = 5.02$ TeV below \mathbf{K}^{*0} for $p_{T} < 3$ GeV/*c*
- \mathbf{K}^{*0} collision energy ratio below unity for $p_{T} < 3 \text{ GeV/}c$

Spectral shapes $K^*(892)$ and $\phi(1020)$ in Pb-Pb

PHYSICAL REVIEW C 106, 034907 (2022)

- Increasing resonance yields with collision centrality (increasing charged particle multiplicity)
- **HIJING** cannot describe the data over the full p_{τ} range
 - \mathbf{K}^{*0} better approximated in limited p_{τ} range for mid-central to peripheral collisions
 - $\phi(1020)$ in agreement with predictions for mid-central collisions for $p_{\tau} > 7 \text{ GeV}/c$

- Resonance yield increase with collision energy -
- Ratio increases with p_r (saturation !) for central and peripheral collisions

Rescattering phenomena expected for K^{*0} with $p_{\tau} < 3$ GeV/c !

ALICE

20

Mean $p_{\tau} \mathbf{K}^{*}(892)$ and $\mathbf{\Phi}(1020)$

- Increasing <p_T> with charged particle multiplicity and collision energy
- Similar masses lead to similar $\langle p_T \rangle$ for K^{*0} and $\phi(1020)$

- Steeper increase of <p_T> with charged particle multiplicity for heavier particles (radial flow)
- Breaking of mass ordering for less central collisions <dN_{ch}/dη> < 300

Mean $p_{\tau} \mathbf{K}^{*}(892)$ and $\mathbf{\Phi}(1020)$

- Increasing <p_T> with charged particle multiplicity and collision energy
- Similar masses lead to similar $\langle p_T \rangle$ for K^{*0} and $\phi(1020)$

- Steeper increase of <p_T> with charged particle multiplicity for heavier particles (radial flow)
- Breaking of mass ordering for less central collisions <dN_{ch}/dη> < 300

Spectral shapes and mean $p_{\tau} \Lambda(1520)$ in Pb-Pb

- - Reproduces spectral shapes
 - Hydrodynamic evolution with increasing $<\beta_{T}>$ towards central collisions
- **EPOS v3.107** (with UrQMD) - - -
 - Reproduces spectral shapes qualitatively
 - Overestimates yield in central and semi-central collisions

- **Increasing** <*p*₋> with system size (and centrality)
- **Blast-Wave model**
 - In agreement with measurements
- EPOS v3.107 (with UrQMD)
 - Describes evolution within uncertainties
- EPOS v3.107 (without UrQMD)
 - Fails to approximate the data !

12

ALICE

Spectral shapes and mean $p_{\tau} \Lambda(1520)$ in Pb-Pb

- Blast-Wave model
 - Reproduces spectral shapes
 - Hydrodynamic evolution with increasing $<\beta_{T}>$ towards central collisions
- EPOS v3.107 (with UrQMD) - - -
 - Reproduces spectral shapes qualitatively
 - Overestimates yield in **central** and **semi-central** collisions

- Increasing <p_T> with system size (and centrality)
- Blast-Wave model
 - In agreement with measurements
- EPOS v3.107 (with UrQMD)
 - Describes evolution within uncertainties
- EPOS v3.107 (without UrQMD)
 - Fails to approximate the data !

ALICE

Ratios to stable particles (ϕ , **K**)

PHYSICAL REVIEW C 106, 034907 (2022)

- K^{*0} /K larger for pp wrt. Pb-Pb, Au-Au
- K^{*0} /K suppression (for larger system size)
- ϕ (1020)/**K** approximately constant as

function of system size

– Thermal model

- K ratio overestimated in central Pb-Pb collisions
- ϕ ratio in good agreement
- Fair description of energy dependence for both ratios

--EPOS3 (without UrQMD)

 Fails to reproduce K*⁰/K suppression

— EPOS3 (with UrQMD)

- Good description for the trends of both ratio !

Ratios to stable particles (ϕ , K, Λ)

K^{*0} /K suppression (for larger system size)

- - Thermal model fair description of energy dependence
 - K ratio overestimated in central Pb-Pb
 - **φ** ratio in good agreement
- -- EPOS3 (without UrQMD)
 - Fails to reproduce K^{*0}/K suppression
 - -EPOS3 (with UrQMD)
 - Good approximation for the trends of both ratio !

- $\Lambda(1520)/\Lambda$ suppression (for larger system size)

Thermal models

- Poor approximation of ratio
- EPOS3 (with UrQMD)
 - Fair description of evolution with system size
 - Overestimated yields

- - Thermal model fair description of energy dependence
 - K ratio overrestimated in central Pb-Pb
 - φ ratio in good agreement
- -- EPOS3 (without UrQMD)
 - Fails to reproduce K^{*0}/K suppression
 - -EPOS3 (with UrQMD)
 - Good approximation for the trends of both ratio !

- $\Lambda(1520)/\Lambda$ suppression (for larger system size)

Thermal models

- Poor approximation of ratio
- EPOS3 (with UrQMD)
 - Fair description of evolution with system size
 - Overestimated yields

Summary...

★ Resonance production is driven by the event multiplicity, independent of the collision energy

- Growing contributions of radial flow with increasing $< dN_{ch}/d\eta >$ in Pb-Pb collisions
- Ratios of very short lived resonances (K^{*0} , $\Lambda(1520)$) suppressed in central collisions
- Rescattering is a dominant effect for short-lived resonances at low momenta
- **\star** Presented models fail to predict the resonance production over the full p_{τ} range
 - Multiple indications of importance of hadronic interactions in the final state for the system created in heavy-ion collisions

Summary...

★ Resonance production is driven by the event multiplicity, independent of the collision energy

- Growing contributions of radial flow with increasing $\langle dN_{ch}/d\eta \rangle$ in Pb-Pb collisions
- Ratios of very short lived resonances (K^{*0} , $\Lambda(1520)$) suppressed in central collisions
- Rescattering is a dominant effect for short-lived resonances at low momenta
- **\star** Presented models fail to predict the resonance production over the full p_{τ} range
 - Multiple indications of importance of hadronic interactions in the final state for the system created in heavy-ion collisions

 ^{×10³}
 ^{×10³}

...and Outlook

★ Run3 studies of hadronic resonances

- Increased statistics wrt. run2
- pp analysis at different collision energies

https://cds.cern.ch/record/2809617 - 11/08/23

Thank you !

Cumune month and

Backup

some more details and model summaries

. . .

Resonance reconstruction $\mathbf{f}_{0}(980)$

arXiv:2206.06216v1 [nucl-ex] 13 Jun 2022

Like-sign method: rejection of combinatorial background from uncorrelated hadrons

combining like-sign pion pairs from same event for like-sign invariant mass distribution as geometric mean of positive and negative pair distributions: 2√(N⁺⁺ N⁻⁻)

Global Fit: width of (additional) signal(s) fixed to vev., masses and background parameter free !

- Signal $f_0 \rightarrow \pi \pi$: Sum of three Breit-Wigner functions
- Residual background ~ Maxwell-Boltzmann

Corrections of raw yields: PYTHIA8 MC simulations and GEANT3 for transport

- pp: detector acceptance, reconstruction efficiency, trigger efficiency, vertex reconstruction, signal loss

Model summaries for $K^*(892)$ and $\phi(1020)$

PYTHIA tunes

- hadronization of light and heavy quarks through Lund string fragmentation model **Perugia tune of PYTHIA6**
 - revised set of fragmentation and flavor parameters for Tevatron; extrapolated to LHC data
 - takes minimum bias and underlying events from LHC at 0.9 TeV and 7TeV into account
- PYTHIA8 Monash 2013 (updated set of hadronization parameters wrt. PYTHIA6)
 - independent string fragmentation
 - good description for mesons, but poor for baryon yields at LHC

Rope Hadronization PYTHIA8

- no independent string fragmentation
- overlap of strings to form ropes in high multiplicity area
- large, dense collisions systems form color ropes that hadronize with larger string tension to enhance strangeness production with increasing multiplicity

EPOS-LHC

- build on parton-based Gribov Regge Theory
- implements a type of radial flow for pp collisions where a very dense system is created in a small volume
- utilizes color exchange mechanism of string excitation and is tuned to LHC data

<u> 'Core':</u>

High string or parton density that allow to create the QGP Increasing strangeness production with multiplicity <u>'Corona':</u>

Dilute region around core where fragmentation occurs as in the vacuum case

EPOS3 (w/o UrQMD)

- based on 3+1D viscous hydrodynamic evolution
- initial stage treated via multiple scattering approach based on pomerons and strings
- reaction volume is split into 'core'- and 'corona'-region
- hadrons from both regions fed into UrQMD where chemical and kinetic freeze-out occur (hadronic interactions are included in this approach)

<u>'Core':</u>

Dense region with initial conditions for QGP evolution <u>'Corona':</u>

Dilute region composed of hadrons from string decays

<u>HERWIG</u>

- includes coherent parton showers from initial and final state QCD radiation
- eikonal multiple parton-parton interactions model for underlying event
- cluster hadronization model for formation of hadrons from quarks and gluons produced in parton shower

Thermal model

(SHM with $\mu_{\rm B}\,{\sim}\,0$ at $\rm T_{ch}$ = 156 MeV)

Model summaries for $\Lambda(1520)$

PHYSICAL REVIEW C 99, 024905 (2019)

Blast-Wave model

- assumes particle production from thermal source which expands with a common transverse velocity
- parameters extracted from fir to stable counterparts

EPOS v3.107 (with UrQMD), EPOS v3.107 (without UrQMD)

- MC generator that employs parton-based Gribov-Regge theory
- describes full evolution of heavy-ion collisions
- describes expansion of the bulk parton matter through viscous hydrodynamics
- incorporates UrQMD transport model for interactions among particles in the hadronic phase in a microscopic approach

Thermal models

- SHM variations with ($\mu_{\rm B} \sim 0$ at T_{ch} = 156 MeV) SHARE3
 - configuration without over/undersaturation parameter ($\mu_{\rm B} \sim 0$ at T_{ch} = 156 MeV)
 - non equilibrium configuration with over/undersaturation parameter ($\mu_{\rm B} \sim 0$ at T_{ch} = 138 MeV, $\gamma_{\rm s} = 1.63$ and $\gamma_{\rm q} = 2.08$)

Model summaries for $\mathbf{f}_0(980)$

arXiv:2206.06216v1 [nucl-ex] 13 Jun 2022

<u>Herwig 7.2</u> (includes $f_0(980)$ generation by default)

- QCG inspired event generator that includes initial and final state QCD radiation
- description of underlying event via eikonal multiple parton-parton interaction model
- cluster hadronization model for formation of hadrons from quarks and gluons produced in the parton shower

Canonical statistical hadronization model CSM:

- hadrons formed from source in chemical equilibrium ($\mu_{\rm B} \sim 0$ at T_{ch} = 155 MeV)
- yields determined by partition function of the canonical ensemble
- multiplicity dependence driven by canonical suppression (exact conservation of baryon number, electrical charge and strangeness over the correlation volume)
- at high multiplicity: strangeness saturation in presence of the QGP
- \rightarrow Incomplete equilibrium of strangeness through strangeness saturation factor γ_s
- γ_{s} -CSM (|S| = 2) double strangeness

 γ_{s} -CSM (|S| = 0) no strangeness

Best fit to data with |S| = 1 - 2!

Coalescence calculations (that use AMPT)

- multiphase transport model coupled with coalescence afterburner with Gaussian Wigner function to generate $f_0(980)$ in three configurations **AMPT** (ss-meson), **AMPT** (KK-molecule), **AMPT** (uuss-tetraquark)
- 1. initial conditions from HIJING model
- 2. partonic interactions from Zhang's parton cascade model (phase space information to implement quark coalescence with s anti-s and tetra-quark configuration)
- 3. conversion to hadronic matter
 - **default AMPT version:** conversion with Lund string fragmentation
 - string melting: quark coalescence used to combine partons into hadrons
- generation of kaon phase-space information which goes into the afterburner for the molecular state
- 4. interactions amongst hadrons
 - based on a relativistic transport model (ART)

Resonance reconstruction $\mathbf{K}^*(892)^0$ and $\boldsymbol{\phi}(1020)$

<u>Mixed-event technique</u>: rejection of combinatorial background from uncorrelated hadrons

 combining unlike-sign pion and K tracks from different events with similar characteristics

pairs required to have: $|\Delta vtx| < 1$ cm $|\Delta n| < 5$

- mixing each event with 5 others to reduce stat. uncertainties
- normalization in region outside of mass peak

<u>Global Fit</u>: width of signals fixed to vev., sigma (detector resolution) and background parameter free !

Signal $\phi \rightarrow KK$: convolution of non. rel. Breit-Wigner function with Gaussian detector resolution

Signal $K^* \rightarrow \pi \pi$: Breit-Wigner function

Residual background Second order polynomial (correlated pairs from real resonance decays where daughters are misidentified as K or pi)

Corrections of raw yields: HIJING (PbPb) and PYTHIA Monash2013 (pp) MC simulations and GEANT for transport

- pp: detector acceptance, reconstruction efficiency, trigger efficiency, vertex selection, decay branching fraction (signal loss)
- Pb-Pb: detector acceptance, reconstruction efficiency

Studying the quark composition of $f_0(980)$

arXiv:2206.06216v1 [nucl-ex] 13 Jun 2022

Herwig 7.2 (includes $f_0(980)$ by default)

- reproduces spectral shape for $p_{T} < 3 \text{ GeV/}c$
- underestimates the data by a factor of 2 (and more)

AMPT (ss-meson), AMPT (KK-molecule), AMPT (uuss-tetraquark)

- spectral shapes too steep
- underestimate the data by a factor > 2 (ratios rescaled !)

$\mathbf{f}_{0}(980)$ How strange can it be ?

28

 $\mathbf{f}_{0}(980)$ How strange can it be ? arXiv:2206.06216v1 [nucl-ex] 13 Jun 2022 $2f_0/(\pi^++\pi^-)^{0.0}$ f₀/ ϕ 2f₀/(p+p) ALICE Branching Ratio Uncertainty = 13% pp $\sqrt{s} = 5.02 \text{ TeV}, |y| < 0.5$ -- HERWIG 7.2 Data 0.4 0.3 0.2 0.1 Model/Data Model/Data Model/Data A8 0.5 p_{T}^{10} (GeV/c) ¹⁰ p_T (GeV/c) p_{T}^{0} (GeV/c) 10 10 10

 $f_0(980)/\pi$ yield ratio

- shape **well** reproduced by HERWIG
- increasing trend as function of p_{T} with saturation above 5 GeV/*c*
- suppressed ratio at low p_T hints at rescattering effects

Yield ratios to particles of similar masses (p, ϕ)

- proton ratio increase as function of p_{T} is not reproduced by HERWIG
- phi ratio is qualitatively reproduced by HERWIG
- ppectral shapes rather determined by strangeness content than mass of the reference particle

ALICE

 $f_0(980)/\pi$ yield ratio

- shape **well** reproduced by HERWIG
- increasing trend as function of p_{T} with saturation above 5 GeV/*c*
- suppressed ratio at low p_T hints at rescattering effects

Yield ratios to particles of similar masses (p, ϕ)

- proton ratio increase as function of p_{T} is not reproduced by HERWIG
- phi ratio is qualitatively reproduced by HERWIG
- spectral shapes rather determined by **strangeness content** than mass of the reference particle