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• Goal:	develop	an	analysis	strategy	that	
does	not	depend	on	the	neutrino	
interaction	model for	3D	granularity	
detectors.

• Case	study:	a	detector	concept	analogous to	
the	SuperFGD detector	from	the	T2K	
experiment.
– Part	of	the	upgrade	of	the	near	detector	

(ND280)	of	the	T2K	experiment	in	Japan.
– Full-active	fine-grained	scintillator	(FGD)	

with	three	views.

The physics case
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– 2M	optically	
independent	cubes,	1	
cm3 per	cube.

– Spatial	localization	of	
scintillation	light.

2D	
projections

3D	
reconstruction



• Goal:	develop	an	analysis	strategy	that	does	
not	depend	on	the	neutrino	interaction	model:

a) Algorithms	to	reject	noise	and	identify	
single	vs	multi-primary-particle	hits.

b) Algorithms	to	fit	the	trajectory	of	single-
particle	objects.

c) Algorithms	to understand	the	activity	at	
the	vertex	of	neutrino	interactions.

Reconstruction approach
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a) Hit	identification.
b) Particle	trajectory	fitting.
c) Vertex	activity	fitting.

Approach
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a) Hit	identification.
b) Particle	trajectory	fitting.
c) Vertex	activity	fitting.

Approach
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Hit identification: noise and ambiguity rejection
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Phys.	Rev.	D 103,	032005 (2020).

• Non-physical	voxels	appear	due	to	a	lack	of	information	during	the	2D	to	3D	
reconstruction,	called	ghost	voxels.

• Cubes	with	a	real	deposition	but	where	no	track	has	passed	through	it,	called	
crosstalk	voxels.

• Approach:	use	Graph	Neural	Networks	(GNNs)	to	identify	those	voxels:
• Example	of	variables	representing	each	hit:	number	of	photoelectrons	deposited	in	

each	plane,	multiplicity	in	each	plane,	etc.
• The	algorithm	chosen	was	GraphSAGE (arXiv:1706.02216).
• In	GraphSAGE,	each	node	neighbourhood	defines	a	computation	graph (in	our	
example,	each	voxel	is	connected	to	other	voxels	within	a	1.75	cm	radius).

https://link.aps.org/doi/10.1103/PhysRevD.103.032005


Hit identification: single vs multi-particle hits

7

• Classify	each	individual	hit	as:	
§ Single-particle	hit:	only	one	particle passes	through	the	hit	cube.
§ Multiple-particle	hit:	at	least	two	different	particles pass	through	

the	hit	cube.
§ Other:	crosstalk or	ghost.

• Using	a	submanifold	sparse	U-Net-based	neural	network	
architecture	(https://arxiv.org/abs/1706.01307).
§ More	computationally	efficient	than	standard	CNNs.

• Efficiencies:

• Excellent	single-particle	isolation	accuracy	allows	running	a	
further	NN-based	track	trajectory	fitting	on	single	particles,	
relying	on	detailed	MC	simulations	of	single	particles.

True	multi-particle True	single-particle True	other

Pred.	multi-particle 0.7777 0.1511 0.0711

Pred.	single-particle 0.0055 0.9654 0.0291

Pred.	other 0.0079 0.0479 0.9442
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True		(simulation)

NN	prediction

https://arxiv.org/abs/1706.01307


a) Hit	identification.
b) Particle	trajectory	fitting.
c) Vertex	activity	fitting.

Approach
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Fitting of the particle trajectory
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• The	next	step	is	to	predict	the	trajectory	of	particles	based	on	single-particle	hit	
information.	

• For	each	state,	we	consider	the	3D	position	and	energy	deposition	of	the	hit.

• Implemented	a	recurrent	neural	network	(RNN),	a	Transformer (encoder),	and	a	
sequential-importance-resampling	particle	filter	(SIR-PF).
§ We	treat	each	particle	as	a	sequence	of	hits,	benefiting	from	the	success	of	
RNN	and	Transformer	in	Natural	Language	Processing	(NLP).
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Workflow
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• Each	algorithm	outputs	the	fitted	3D	trajectory	
point	for	each	input	hit.
§ SIR-PF:	first	reconstructed	hit	used	as	prior	(average	of	

forward	and	backward	filterings),	sample	propagation	
through	the	following	15	hits.	The	likelihood	relies	on	a	
precomputed	5-dimensional	histogram.

§ RNN:	five	bi-directional	GRU	layers,	50	hidden	units	each.
§ Transformer:	5	encoder	layers,	8	heads,	hidden	size	of	64.

• Main	results	(Commun. Phys 6, 119 (2023)):
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• The	improved	trajectory	fitting	significantly	improves	the	
charge	reconstruction,	PID	by	range,	and	momentum	by	
curvature.

Details

>30%	better	transformer	
resolution	compared	to	the	SIR-PF	

https://www.nature.com/articles/s42005-023-01239-4


a) Hit	identification.
b) Particle	trajectory	fitting.
c) Vertex	activity	fitting.

Approach

12Saúl Alonso-Monsalve – ETH Zurich



Vertex activity: standard fitting method
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• Vertex	activity	(VA):	particles	releasing	their	energy	in	the	proximity	of	the	neutrino	interaction	
vertex but	that	do	not	show	visible	tracks	from	where	the	kinematics	can	be	reconstructed.
– A	“blob”	of	scintillation	light	is	observed.

• Standard	VA	fitting	method:
§ Goal:	build	the	neutrino	VA	in	forward	folding	from	the	sum	of	single	particle	reconstructed	objects.

• Particle	information	to	reconstruct:	#	of	particles	(mostly	protons),	energy,	direction,	vertex	position.
§ Method:	likelihood	fitting.

1. Simulating	any	possible	combination	of	the	VA	parameters	and	build	VA.
2. Finding	the	VA	3D	image	(e.g.	SFGD	hits)	that	“best	fits”	the	data	and	find	the	“best-fit”	parameters.

§ Advantages:
• Studying	systematics	directly	from	single-particle	data	(e.g.,	beam	test)
• Allowing	to	set	confidence	intervals	on	the	fitted	VA	parameters.

§ The	fitting	method	is	highly	
computationally	expensive.
• Requires	a	large	number	of	combinations	
of	parameters	to	be	simulated.	

• Unfeasible	in	practice.
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Alternative: deep-learning 
approach

Select	the	combination	that	
minimises/maximises	a	

target	metric	
(WORK	IN	PROGRESS)

run	the	GAN	
multiple	times	
per	particle

• Transformer	output:
- Vertex	x,	y,	z	position.
- Kinetic	energy	of	each	particle.
- Direction	of	each	particle	

(spherical	coordinates)
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VA fitting transformer results (I)

• Number	of	protons:
– Testing	on	events	with	1-5	protons.
– The	algorithm	predicts	the	correct	

number	of	particles	in	each	event	
with	~65%	acc.

– It	predicts	the	correct	number	of	
particles	with	98%	acc.	assuming		an	
error	of	± 1	particle.

– Missed	protons	have	on	average	a	
KE	≤ 10 MeV.

Saúl Alonso-Monsalve – ETH Zurich

• Kinetic	energy:
– Testing	events	with	

protons	of	a	KE	up	to	60	
MeV	(uniform	
distribution).

– Better	resolution	for	
high-energy	events.

– Standard	deviation	~7	
MeV	on	average	
(resolution	~11%).
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VA fitting transformer results (II)
• Direction (in	spherical	

coordinates):
– Isotropic	testing	events.
– Symmetric	results	for	both	θ and	Φ.
– Better	results	for	longer	particles	(as	

expected).
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• Vertex	position:
– Testing	protons	

starting	randomly	
within	a	3x3x3	cube	
area.

– Always	guessing	the	
right	cube	(>98%	of	
the	cases).

– 3D	average	distance	
between	true	and	reco
vertex	of	~4	mm	(~2.4	
mm	per	coordinate).

• The	GAN-based	fitting allows	us	to	
improve	the	reconstructed	kinematics
(e.g.,	11%	KE	resolution	improvement).
• Work	in	progress!



Summary
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• Deep	learning	could	be	a	key	tool for	event	reconstruction	in	voxelised	
detectors.
– In	particular,	in	detectors	that	provide	fine	details	of	the	interaction	but	are	
hard	to	analyse	using	traditional	methods.

• Successful	application	to	different	problems,	such	as:
– Hit	identification.
– Track	fitting.
– Vertex	activity	understanding.

• The	developed	strategy	allows	us	to	attack	the	problem	of	systematic	
uncertainties and	use	the	details	of	MC	detector	simulations	more	confidently.

• Future	work	requires	an	extensive	validation	of	the	methods	and	
application	to	experimental	data.
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Validating the GAN generator
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Number	
of	

protons

Initial	
KE	

[MeV]

Initial	
position	
[cm]

𝜃	
[rad]

𝜑	
[rad]

Testing	
sample	1	

10K 10 −2.3𝑒!",
−2.3𝑒!",
−5.1𝑒!#

2.186 -2.356

Testing	
sample	2

10K 20 −2.3𝑒!",
−2.3𝑒!",
−5.1𝑒!#

3.142 0.000

Testing	
sample	3

10K 30 −2.3𝑒!",
−2.3𝑒!",
−5.1𝑒!#

2.356 -1.571

Testing	
sample	4

10K 40 −2.3𝑒!",
−2.3𝑒!",
−5.1𝑒!#

2.526 0.785

Testing	
sample	5

10K 50 −2.3𝑒!",
−2.3𝑒!",
−5.1𝑒!#

1.741 -0.540

• Five	distinct batches of samples,	each with fixed
initial physics parameters.
§ 10K	protons each.

• We generated five batches of protons with the NN	
using the same physics parameters.
§ 10K	protons each too.

• Allows us to understand whether the network is
catching the stochasticity of the simulation.

XY charge projection

True

GAN
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