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Semivisible jets
Semivisible jets [1] (SVJ) are a new physics signature arising in Hidden
Valley theories where the dark sector is made of dark quarks interacting via
a confining SU(N) force (dark QCD). In this family of models, dark quarks
are expected to hadronize in the dark sector, forming dark bound states. A
fraction of them is unstable and promptly decays back to Standard Model
(SM) quarks, which then hadronize in the SM sector. The resulting SM
hadrons form a jet interspersed with invisible dark hadrons, dark matter
candidates. The different jet substructure of SVJs, due to the double
hadronization step and invisible dark hadrons, can be exploited to classify
them versus SM jets. Because the true nature of dark QCD (if it exists) is
unknown, unsupervised machine learning algorithms are well suited tools
to perform a model-independent search for SVJs.

Autoencoders
Autoencoders (AE) are neural networks composed of two parts:
• an encoder, which maps the input

features space to a lower dimen-
sional latent space,

• a decoder which maps the la-
tent space to an output space
with same dimension as the input
space.

AEs are trained to minimize the re-
construction error between input and
output, such that examples out of the
training distribution have a higher
loss. Trained on SM data, AEs can
thus perform signal-agnostic searches
for new physics [2, 3]. In the case of
SVJs, AEs are trained on SM jets.
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The problem of out-of-distribution reconstruction
AEs were proven to well perform
anomalous detection of SVJs versus
QCD [4] but achieve poor classifica-
tion of SVJs versus top-quark jets.

10 AEs were trained on a dataset
of top-quark jets until minimal
validation loss. They take 8 jet
substructure input features, mapped
to a normal distribution. The archi-
tecture is a fully connected network
with 10, 10, 6, 10, 10 neurons.1

The AEs generalize (reconstruct with
low error) out of the training phase-
space (out-of-distribution, OOD), in
particular in regions where SVJs are
present: the average reconstruction
error for background (SM) and signal
(SVJ) jets is the same. This results in
low anomaly detection performance.
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1 Input features and technical details available in this note:

Normalized autoencoder
Normalized autoencoders [5] (NAE) suppress OOD reconstruction by
learning the training data probability distribution pdata. The NAE model
probability pθ is defined to assign high probability to low reconstruction
error (Eθ) examples:

pθ(x) = 1
Ωθ

exp (−Eθ(x))

Examples following pθ are obtained by sampling via a Langevin Markov
Chain Monte Carlo (MCMC) (“negative examples”). The loss function is
the difference between the reconstruction error of the training (“positive”)
examples and of the negative examples:

Ex∼pdata [Lθ(x)] = Ex∼pdata [Eθ(x)] − Ex′∼pθ
[Eθ(x′)]

positive energy E+ negative energy E−

Unsupervised SVJ tagging versus top jet
The loss function was modified to prevent the divergence of negative energy
and minimize positive energy while the energy difference is close to 0:

L = log (cosh (E+ − E−)) + αE+

The Energy Mover’s Distance (EMD) is used to quantify the distance
between the training and the negative samples in the input feature space.
As the positive energy is minimized beyond a certain value, the EMD in-
creases: the network cannot bet-
ter reconstruct training examples and
suppress OOD reconstruction at the
same time. The best epoch is just
before the EMD increase: mini-
mal OOD reconstruction and max-
imal training examples reconstruc-
tion. This is a fully signal-
agnostic procedure to train a
NAE, not using signal SVJs sim-
ulation.
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