

Light@LHC project

Searching for anomalous H \to aa \to $\gamma\gamma\gamma\gamma$ decays with the ATLAS detector

Peter Krämer ¹, Olivera Vujinović ¹ on behalf of the ATLAS collaboration ¹Johannes Gutenberg Universität Mainz

[ATLAS-CONF-2023-040]

Analysis overview

- Limits on Higgs boson branching ratios to invisible or undetected states motivate searches for Higgs boson decays to BSM particles
- Probe exotic Higgs boson decays into 2 ALPs
- Model could explain the muon (g-2) discrepancy
- ALPs are dark matter candidates
- This analysis searches for light pseudo-scalar particles in the decay of the 125 GeV Higgs boson in a final state with 4 photons
- Final state signature largely dependent on m_a and $C_{a\gamma\gamma}$ different approaches/categories needed
- Low $m_a \Rightarrow$ collimated photon-pairs reconstructed as one
- Same reconstructed signature as $H \rightarrow \gamma \gamma$
 - ⇒ Distinguish collimated photon-pairs from resolved photons
- Small $C_{a\gamma\gamma}$ ⇒ Displaced vertices

Analysis steps

- Preselection: events with 2,3,4 photons $(p_T(\gamma) > 15 \text{ GeV}, |\eta|(\gamma) < 2.37, \text{ isolation})$
- Merged photons:
 - Standard Photon ID: low efficiency for merged photons:
- Dedicated approach for rejecting fake photons \Rightarrow ANN-1
- Different kinds of photons: Single or Merged \Rightarrow ANN-2
- Select event category (see right-hand side)
- Data driven background estimation
- \Rightarrow Use ANNs to reconstruct ALP (3 γ and 4 γ)
- Profiled likelihood fit
- Calculate exclusion limits on m_a and $C_{a\gamma\gamma}$

- 6 (5 used) categories for long-lived ALP search
- Dedicated search for promptly decaying ALPs (stricter selection criteria)

Background estimation - Long lived ALP search

- Data driven sideband fitting method
- Blind m_{inv}^{reco} distribution around $m_h = 125 \, \text{GeV}$
- 2 photon categories:
 - Sideband fit region $100 150 \, \text{GeV}$
 - Landau fitting function (2S, 1M1S)
- 2nd order polynomial fitting function (2M)
- \blacksquare H $\rightarrow \gamma \gamma$ background from MC simulation
- 3 and 4 photon categories:
- Sideband fit region 80(105) 150(145) GeV 3S (4S)
- 3rd (3S) and 2nd (4S) order polynomials
- Separate 4 different regions in m_a^{reco} $(0-10, 10-25, 25-40, 40-62 \,\text{GeV})$
- Alternative fitting function for spurious signal uncertainty
- Reduced fitting range used to assess additional systematic uncertainty
- Methodology validated with data and MC validation regions

Background estimation - Promptly decaying ALP search

- Stricter requirements on PID to reject fake photons
- Tight selection around the m_a^{reco} parameter
- Background yield in (shaded) sideband region scaled by the ratio of signal and sideband areas
- Systematic uncertainty evaluated using an enlarged sideband region
- Methodology validated with multi-photon MC samples

Systematic uncertainties

- Analysis sensitivity is limited by the available data statistics
- Commonly used experimental uncertainties
 - Integrated luminosity: 0.8%
 - Imperfect modeling of pileup: below 1%
 - Trigger efficiency: from 2 to 3%
 - Standard photon ID, photon isolation, photon scale and resolution below 3% (promptly decaying ALPs)
- Uncertainty on NN output obtained from $Z\rightarrow$ ee events: up to 15%
- Additional customized uncertainties for photons with displaced vertices
 - Estimated by studying the decay of long-lived hadrons
 - Rescaled shower shape variables for displaced vertices
 - Re-evaluated photon ID and NN classifiers
- Uncertainty on ANN-1 (real vs. fake photon classification) is 3%
- ANN-2 and photon ID: range from 4 to 23% depending on the displacement
- Theoretical uncertainties: around 6%

Statistical Analysis

- Long-lived ALP search:
- Perform maximum-likelihood fit of the m_{inv} reco distribution in the 2 most sensitive categories
- 2M and 1M1S for $m_a \le 3.5 \, \text{GeV}$
- \blacksquare 4S and 3S for $m_a > 3.5 \, \text{GeV}$
- Promptly decaying ALP search:
- Maximum-likelihood fit with one bin
- Upper limits on $\mathcal{B}(H \to aa \to 4\gamma)$ derived using the CLs technique
- Limits on the branching ratio can be converted into a limit on the coupling of ALPs to photons

Conclusion

- The search aims to identify a narrow resonance with a mass between 0.1 and 62 GeV with a resonance decay up to a distance of 1970 mm
- NN classifiers are applied to distinguish between single and collimated photon signatures
- A dedicated search strategy for long-lived ALP decays has been developed for the first time
- This results in the most stringent limits to date

— observed

---- expected

■ These limits exclude much of the remaining parameter space that could explain the $(g-2)_{\mu}$ discrepancy

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$ ---- expected $C_{a\gamma\gamma} = 1.0$ **exp.** ± 1σ **exp.** ± 2σ **ⓑ** 10⁻³ 10^{-4} m_a [GeV]

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$

 $C_{a\gamma\gamma} = 0.01$

Convert limits on branching ratio to 2D exclusion in $C_{a\gamma\gamma}/m_a$ plane

