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Introduction Soliton solutions

Solitons: special role in classical physics as well as in quantum and
string theory, determining a richer structure of the full
non-perturbative regime:

originally used as “bounce solutions” to discuss the possible
instability of the pure Kaluza-Klein vacuum ground state;

generalizations of these soliton solutions have been also considered
in the analysis of the semiclassical stability of non-susy AdS gravity;

soliton configurations can turn out to be the lowest energy solution
with chosen boundary conditions, leading to a new kind of positive
energy conjecture;
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Introduction Soliton solutions

it is possible to consider configuration featuring Wilson loops:»
F �

¾
Aφ dφ � 0

with suitable fields periodicity boundary conditions;

under certain conditions, a soliton can be obtained through a double
Wick rotation of a BH solution

tÑ i t , φÑ iφ , pQ
Λ
Ñ iQ

Λ
q

BPS configurations preserving some of the supercharges can be
obtained analysing the explicit form of the Killing spinors
equations.
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The model SUGRA with FI terms

We are going to consider a gauged supergravity with a single vector multiplet with
FI terms. The bosonic Lagrangian has the general form:

LBOS � LEH �Lscal �Lvect .

1 We start from amodel featuring 1 complex scalar z, 2 vector field strengths FΛµν and
a non-trivial scalar potentialV . The theory is further modified introducing suitable FI
terms θM.

2 An embedding of the solution in a supergravity model is important, since many
physical aspects of the theory can be better understood.

3 The scalar fields of the theory can be characterized by means of the geometry of the
chosen non-linear σ-model.

4 We consider an explicit solutions in the T3 model, the latter resulting in a single
dilaton truncations of the maximal SOp8q gauged supergravity inD � 4.
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The model Explicit solutions

We restrict to purely magnetic solutions. The action has the explicit form:

S � 1
8πG

»
d4x

?�g
�
R

2
� 1

2
pBϕq2 � 3

L2 cosh

�c
2
3
ϕ

�
� 1

4
e
3
b

2
3 ϕ

�
F1
	2
� 1

4
e
�

b
2
3 ϕ

�
F2
	2
�

.

We will study this in the context of asymptotically AdS4 solutions of a truncation of
gauged N � 8 supergravity, and construct solutions of its T3 model truncation;

in the model we consider there are two Wilson lines,

Φ1
M �

»
F1 , Φ2

M �

»
F2 ,

and there is a one-parameter family of values of the Wilson lines which give
supersymmetric solitons;

© Antonio Gallerati 6



The model Explicit solutions

We restrict to purely magnetic solutions. The action has the explicit form:

S � 1
8πG

»
d4x

?�g
�
R

2
� 1

2
pBϕq2 � 3

L2 cosh

�c
2
3
ϕ

�
� 1

4
e
3
b

2
3 ϕ

�
F1
	2
� 1

4
e
�

b
2
3 ϕ

�
F2
	2
�

.

We will study this in the context of asymptotically AdS4 solutions of a truncation of
gauged N � 8 supergravity, and construct solutions of its T3 model truncation;

in the model we consider there are two Wilson lines,

Φ1
M �

»
F1 , Φ2

M �

»
F2 ,

and there is a one-parameter family of values of the Wilson lines which give
supersymmetric solitons;

© Antonio Gallerati 6



The model Explicit solutions

We restrict to purely magnetic solutions. The action has the explicit form:

S � 1
8πG

»
d4x

?�g
�
R

2
� 1

2
pBϕq2 � 3

L2 cosh

�c
2
3
ϕ

�
� 1

4
e
3
b

2
3 ϕ

�
F1
	2
� 1

4
e
�

b
2
3 ϕ

�
F2
	2
�

.

We will study this in the context of asymptotically AdS4 solutions of a truncation of
gauged N � 8 supergravity, and construct solutions of its T3 model truncation;

in the model we consider there are two Wilson lines,

Φ1
M �

»
F1 , Φ2

M �

»
F2 ,

and there is a one-parameter family of values of the Wilson lines which give
supersymmetric solitons;

© Antonio Gallerati 6



The model Explicit solutions

We restrict to purely magnetic solutions. The action has the explicit form:

S � 1
8πG

»
d4x

?�g
�
R

2
� 1

2
pBϕq2 � 3

L2 cosh

�c
2
3
ϕ

�
� 1

4
e
3
b

2
3 ϕ

�
F1
	2
� 1

4
e
�

b
2
3 ϕ

�
F2
	2
�

.

We will study this in the context of asymptotically AdS4 solutions of a truncation of
gauged N � 8 supergravity, and construct solutions of its T3 model truncation;

in the model we consider there are two Wilson lines,

Φ1
M �

»
F1 , Φ2

M �

»
F2 ,

and there is a one-parameter family of values of the Wilson lines which give
supersymmetric solitons;

© Antonio Gallerati 6



The model Explicit solutions

the explicit solution has the schematic form

ϕ � �ℓ�1 lnpxq , FΛµνpx, ΓΛq ,

ds2 � Υpxq

�
L2 dt2 �

η2

fpxq
dx2 � fpxqdφ2 � L2 dz2



;

obtained from the old BH configuration by means of the double Wick rotation.

We are interested in soliton solutions where the circle contracts in the interior of the
geometry at some position x0 where fpx0q � 0.

Regularity of the metric at x � x0 requiresφ P r0,∆s where

∆�1 �

���� 1
4πη

df

dx

����
x�x0

.
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The model Boundary conditions, phase structure

After a suitable change of coordinate x � xprq, the soliton energy parameter µ can be
then read-off from the asymptotic expansion of the metric:

gφφ �
r2

L2 �
µ

r
�Opr�2q , µ � 	

4L2

3η

�
3Q2

1 �Q
2
2

	
;

Solutions with non-zero charges have net magnetic fluxes at infinit

Φ1
M �

»
F1 �

¾
A1 �Q1∆

�
1� x�2

0

	
� 2πLψ1 ,

Φ2
M �

»
F2 �

¾
A2 �Q2∆

�
1� x2

0

	
� 2πLψ2 .

From the boundary point of view, it is natural to parameterize solutions in terms of the
boundary data we hold fixed:

 fixed fluxes, holding fixedψ1 ,ψ2 ñ 0 to 2 sols;
 fixed charges, holding fixedQ1 ,Q2 ñ 0 to 4 sols.
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The model BPS solutions

It is possible to find soliton configurations preserving part of the supersymmetry
in our truncation of the maximal supergravity theory when

Q1 � �
1?
3
Q2 .

the above formulae are found imposing the vanishing of SUSY variations (Killing spinor
equations);

for fixed charge boundary conditions there are 2 distinct susy soliton configurations
(degeneracy of supersymmetric solutions);

for the same fixed charge boundary conditions, surprisingly a family of non-susy
solutions of lower energy and free energy than the supersymmetric ones can be found.
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solutions of lower energy and free energy than the supersymmetric ones can be found.
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Conclusions Distinctive features

1 We studied some soliton configuration in a gauged supergravity framework,
constructing solutions of its T3 model truncation.

2 In the model under consideration there are two Wilson lines, with a
one-parameter family of the latter which give supersymmetric solitons.

3 For supersymmetry-preserving fixed charge boundary conditions there are
two distinct soliton solutions.

4 The new solutions require amore in-depth study of the degeneracy of the susy
configurations in the presence of generic boundary conditions.

5 One branch of susy solutions has higher energy than a non-susy one with the
same boundary conditions.
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Thank you for listening!
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