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Introduction Soliton solutions

Solitons: special role in classical physics as well as in quantum and
string theory, determining a richer structure of the full
non-perturbative regime:

o originally used as “bounce solutions” to discuss the possible
instability of the pure Kaluza-Klein vacuum ground state;

o generalizations of these soliton solutions have been also considered
in the analysis of the semiclassical stability of non-susy AdS gravity;

@ soliton configurations can turn out to be the lowest energy solution

with chosen boundary conditions, leading to a new kind of positive
energy conjecture;
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o itis possible to consider configuration featuring Wilson loops:

JFz%A@d(p;éO

with suitable fields periodicity boundary conditions;

@ under certain conditions, a soliton can be obtained through a double
Wick rotation of a BH solution

t—it, e —ig, (Qr—1Q,)

o BPS configurations preserving some of the supercharges can be
obtained analysing the explicit form of the Killing spinors
equations.
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We are going to consider a gauged supergravity with a single vector multiplet with
Fl terms. The bosonic Lagrangian has the general form:

ZLoos = Len + Loscal + Liect -

@ We start from a model featuring 1 complex scalar z, 2 vector field strengths F]{L\, and
a non-trivial scalar potential V. The theory is further modified introducing suitable Fl
terms O .

@ An embedding of the solution in a supergravity model is important, since many
physical aspects of the theory can be better understood.

@ The scalar fields of the theory can be characterized by means of the geometry of the
chosen non-linear o-model.

@ We consider an explicit solutions in the T3 model, the latter resulting in a single
dilaton truncations of the maximal SO(8) gauged supergravity in D = 4.
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We restrict to purely magnetic solutions. The action has the explicit form:

BHG jd4xF<f = 7( )” + 5 cosh <\[¢> e (p) % ~JZo (%) )

@ We will study this in the context of asymptotically AdS, solutions of a truncation of
gauged N = 8 supergravity, and construct solutions of its T3 model truncation;

@ in the model we consider there are two Wilson lines,

@L:JFK <D,%,=JF2,

and there is a one-parameter family of values of the Wilson lines which give
supersymmetric solitons;
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@ the explicit solution has the schematic form

¢ = +07"In(x),  FN (TN,

uv

2
ds? = Y(x) <L2 at? — % dx? — f(x) de? — L2 dz2> ;

obtained from the old BH configuration by means of the double Wick rotation.

@ We are interested in soliton solutions where the circle contracts in the interior of the
geometry at some position xy where f(xg) = 0.

@ Regularity of the metric at x = xq requires ¢ € [0, A] where

AT = 1 df
" |47m dx

xX=Xq
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@ After a suitable change of coordinate x = x(r), the soliton energy parameter p can be
then read-off from the asymptotic expansion of the metric:

T‘z 98

412
_ -2 - 2 2\ .
me*LQ*?JFO(T P H*+3n (3Q1*Q2>:

@ Solutions with non-zero charges have net magnetic fluxes at infinit
o], = j]ﬂ = §A1 =QiA (‘I —xgz) =27l Y,

@ﬁ:jFZ:ffAz:QzA(wxg)zanwz.

@ From the boundary point of view, it is natural to parameterize solutions in terms of the
boundary data we hold fixed:

¢ fixed fluxes, holding fixed V{1, ¥» = 0to 2 sols;
¢ fixed charges, holding fixed Q4, Q, = 0to 4 sols.
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The model BPS solutions A

It is possible to find soliton configurations preserving part of the supersymmetry
in our truncation of the maximal supergravity theory when

Q1=—%Qz-

@ the above formulae are found imposing the vanishing of SUSY variations (Killing spinor
equations);

@ for fixed charge boundary conditions there are 2 distinct susy soliton configurations
(degeneracy of supersymmetric solutions);

@ for the same fixed charge boundary conditions, surprisingly a family of non-susy
solutions of lower energy and free energy than the supersymmetric ones can be found.
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@ We studied some soliton configuration in a gauged supergravity framework,
constructing solutions of its T3 model truncation.

@ In the model under consideration there are two Wilson lines, with a
one-parameter family of the latter which give supersymmetric solitons.

@ For supersymmetry-preserving fixed charge boundary conditions there are
two distinct soliton solutions.

Q@ Thenew solutions require a more in-depth study of the degeneracy of the susy
configurations in the presence of generic boundary conditions.

@ One branch of susy solutions has higher energy than a non-susy one with the
same boundary conditions.
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