

The CMS Level 1 muon trigger system for the HL-

LHC

(EPS2023) – August 2023 Carlos Vico Villalba - University of Oviedo, on behalf of the CMS Collaboration

NIMA -168103

Universidad de Oviedo

ICTEA

- HL-LHC will open up an unprecedented opportunity for HEP: high-precision SM measurements and extending BSM searches.
- The detector readout electronics and DAQ will be upgraded to allow an increased L1 trigger rate (750 kHz) and latency of 12.5 μ s.
- Goal: maintain or improve trigger thresholds despite the harsher environment and access unexplored regions of the phase-space.

Local Reconstruction

- Trigger primitives are the basic muon object obtained from L1 local reconstruction.
- DT+RPC Analytical method
 - Baseline: start from individual hits and build straight patterns (segments).

New **filter** for Phase2! CMS will instrument dedicated FPGAs for simultaneous readout of the whole DT+RPC system for Phase2 at L1

Muon track finders

Trigger primitives are used as input for pattern recognition algorithms that aim to correlate muon information across different parts of the detectors

Barrel MTF

- Algorithm: Kalman Filter.
 - combining segments based on phi, bending angle and curvature.
- Overlap MTF
- Algorithm: Naïve Bayes Classifier.
 - Log likelihood (p_T) = Log likelihood (ϕ) .
- NEW: Working in a NN approach that could benefit search for displaced patterns.
 - Implementation in firmware is undergoing.

Endcap MTF

- Algorithm: Neural Network-based track building algorithm (EMTF++).
- new track patterns to make use of detector upgrades.
- $\triangleright p_T$ assignment based on Neural Networks.

Global Muon Trigger

- One of the great features of the Phase 2 L1T is that tracker tracks will be available at L1.
- A muon correlator is therefore designed to match tracker tracks with muon stubs within microseconds!
- Improvements in precission...
 - ... But also new (displaced) signatures can be explored

thanks to the MTF inputs

