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SUPERCLUSTERING IN ECAL “MUSTACHE” ALGORITHM

Reconstructed energy deposits in the The algorithm currently used in CMS for reconstruction of SuperCIusters
Rechits PbWO, crystals of the calorimeter (rechits)
left by particles. E; Purely geometrical approach:
l - All the clusters falling into the specified
Rechits are gathered together around the ) ) ,
crystal with highest deposited energy to form mustache” shape are considered as part of
Clusters clusters. y the SuperCluster. The size of the area
Each cluster representsla singlg particle. depends on energy and position of the seed.
l -> Or several overlapping particles. | R I5al
- “Mustache” shape due to the CMS magnetic 3oy | <5< 10GeV g
N 1.48 <M., < 1.75 §
Due to bremsstrahlung and photon conversion before the ECAL, the field (spread along @).
SuperClusters iIndividual clusters have to be combined together to form a _ o | | '
SuperCluster. High efficiency: the algorithm is able to gather even low-energy clusters.
The energy of the initial particle can be reconstructed from Downside: suffers from pileup (PU) and noise contamination.
the SuperCluster. Energy regression is further applied that can correct PU and noise on average.

DEEPSUPERCLUSTER MODEL

New graph-based Machine Learning algorithm for SuperClustering. ... | Dataset for the training:
- Maintains the efficiency while improving PU and noise rejection. . : * Electrons and photons generated uniformly in pr = [1,100]
. . Ay GeV.

-> Graph NN are able to aggregate the information between the neighbors. el L o |+ PU uniformly distributed between [55,75] interactions.
(W, 19) (v N, R, 43 PR W : number of windows in the oL, . e [+ Windows opened around all the clusters with Er > 1 GeV
g::&i: Hechits Self-Attention E?J:]Cleber of clusters S I I " L S (SeedS).

4L Comlggit'on R: number of rechits ' | R SR A R T . .

SRR . [X¥,Z] tensor dimension L T Model Input: Cluster information (£, £, n, ¢, z, number of

ol s eneras ‘ . . . .

1 L Nan (WX, 146] regression crystals, ...), list of rechits, summary window features
e Cochit P layer | windows around . ]

ctlts swnmary| ... ; \ nputs ceeds (max, min, mean of the crystal variables).
‘ [WN,18] ! |
ii?fé‘i‘fé" Distance 5 o S Trainable layers e . L .
DNN _self ; | - factor Model Output: cluster classification (in/out of SC), particle classification, energy regression.
| e E C];;‘rs]%dc(:vion 1;1 ow il . . .
Clusters feat. vector jd]acxl;y 1:Inal;rlx i .Self—Attenftion. Sgﬁ%&? Tensors with dimensions | |
e T e ' { - Same network to identify the flavor of the particle.
_ Outputs
[  Cluster - Extra dataset: sample containing jets.
c]assDi:;i\T(;a]ltion W ‘1'44] ——» Tensor flow
S jN | e + Skinped connection - Goal: classify jets/electrons/photons.
et - Transfer Learning was used to re-train only the ID part of the network to avoid
luster indow Con nation .
[WNIM] assitcaton (W 11 ctassiation (" 1 (D) concona performance degradation for electrons/photons.
X Aggregation (sum over
clusters dimension)

RESULTS: PARTICLE CLASSIFICATION

RESULTS: ENERGY RESOLUTION

Resolution of tr]e rgconstructed uncorrected SuperCluster energy (Ez,,) divided by the true - Particle classification performance (DeepSC model) for jet vs. photon (left) and photon
energy deposits in ECAL (Eg,,,) versus: vs. electron samples (right).
- the gen-level particle position N, | (top) - Only ECAL variables are used.
- the transverse energy of the gen-level particle E{%e" (center) - High performance for jet vs. photon discrimination.
: : : M Its in CMS-DP-2022-032
- the number of simulated PU interactions (bottom) ore results in CMS-DP-2022-03 o . o n
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The lower panel shows the ratio of the resolution of the two algorithms: 3000¢ ]
. CMS Simulation Preliminary _14 Tev 5 CMS Simulation Preliminary _ 14 TeV
é 1.2_\ T [E$e“ [GeV]l T ] é 1.2_\ T [E$e“ [GeV]l T ] 2000k a
© [+ (o2 4 [4060 + [60,100] © |  + (o2s + [40,60] + [60,100]
8‘1 [25, 40] 8(1 i [25, 40] X
§10— T :*:%=— §1.0 ¢¢ 3; 10 = 1000} ]
© I E. |b/E Electron (ECAL + Tracker) © L Ec |b/E Photon (ECAL+Tracker) 4
0856 05 10 15 20 25 085505 10 15 ‘210””2.‘5‘ A T T T S e ]
INGen| INGen| 0.0 0.2 0.4 0.6 0.8 1.0 8.0 0.2 0.4 0.6 0.8 1.0
g [T T g T T T Jet score Electron score
_92 ' [+ [01] [tirf:ﬂz] + [1566,25] | QE . [+ [0.1] [1,%3"‘1'21 + [1566,25] | CMS Simulation Preliminary 14 TeV CMS Simulation Preliminary 14 TeV
8 | ] 8 | >, B | ! ! ! | ! ! ! | ! ! ! | ! ! ! | ! ! ! B | ! ! ! | ! ! ! | ! ! ! | ! ! ! | ! ! !
R e e e e §1O ] 2 o E>”1'Of
s | an s |5 KT . o
= It,/Eg Electr?n (ECAL+‘Tracker) ‘ | i Eca“b/‘Egen Photo? (ECAL+Tracker) | ‘ HL:) 0-8__ ﬁ /’/ _ E o
0.8 20 40 “60”‘80“I100 0.8 “20”‘4OI"60“‘80”‘100 qG_J | /’/ q(I_J i
. S oef — 5 osf
212F InGen ] St2f InGenl ] I .~~" jet vs. photon 2 I
% : + 10, 1] [1,1.4442]  + [1.566,2.5] ] t\; i + 0, 1] [1,1.4442] -+ [1.566,2.5] | oab B} . AUC — 0 98t i o 0-4;
§1'0,_+ t + —— §1.07—*§7 m i ;”’ | i
© 1 Ecu/Eqen Electron (ECAL + Tracker) 5 © Eca/Eqen Photon (ECAL + Tracker) ‘ 0.2 /«" ’ . 0.2 ]
0850 85 60 6 70 75 085 5 60 6 70 75 7 ’ —— Er € [40,50] GeV - —— Er € [40,50] GeV |
o i 0.0 55553 0.4 06 08 1o 0.0 5555 0.4 06 08 1o
Significantly improved resolution, particularly for low E; signals and at high PU. Photon fake rate Electron fake rate
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