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SUPERCLUSTERING IN ECAL “MUSTACHE” ALGORITHM

Reconstructed energy deposits in the The algorithm currently used in CMS for reconstruction of SuperCIusters
Rechits PbWO, crystals of the calorimeter (rechits)
left by particles. E; Purely geometrical approach:
l - All the clusters falling into the specified
Rechits are gathered together around the ) ) ,
crystal with highest deposited energy to form mustache” shape are considered as part of
Clusters clusters. y the SuperCluster. The size of the area
Each cluster representsla singlg particle. depends on energy and position of the seed.
l -> Or several overlapping particles. | R I5al
- “Mustache” shape due to the CMS magnetic 3oy | <5< 10GeV g
N 1.48 <M., < 1.75 §
Due to bremsstrahlung and photon conversion before the ECAL, the field (spread along @).
SuperClusters iIndividual clusters have to be combined together to form a _ o | | '
SuperCluster. High efficiency: the algorithm is able to gather even low-energy clusters.
The energy of the initial particle can be reconstructed from Downside: suffers from pileup (PU) and noise contamination.
the SuperCluster. Energy regression is further applied that can correct PU and noise on average.

DEEPSUPERCLUSTER MODEL

New graph-based Machine Learning algorithm for SuperClustering. ... | Dataset for the training:
- Maintains the efficiency while improving PU and noise rejection. . : * Electrons and photons generated uniformly in pr = [1,100]
. . Ay GeV.

-> Graph NN are able to aggregate the information between the neighbors. el L o |+ PU uniformly distributed between [55,75] interactions.
(W, 19) (v N, R, 43 PR W : number of windows in the oL, . e [+ Windows opened around all the clusters with Er > 1 GeV
g::&i: Hechits Self-Attention E?J:]Cleber of clusters S I I " L S (SeedS).

4L Comlggit'on R: number of rechits ' | R SR A R T . .

SRR . [X¥,Z] tensor dimension L T Model Input: Cluster information (£, £, n, ¢, z, number of

ol s eneras ‘ . . . .

1 L Nan (WX, 146] regression crystals, ...), list of rechits, summary window features
e Cochit P layer | windows around . ]

ctlts swnmary| ... ; \ nputs ceeds (max, min, mean of the crystal variables).
‘ [WN,18] ! |
ii?fé‘i‘fé" Distance 5 o S Trainable layers e . L .
DNN _self ; | - factor Model Output: cluster classification (in/out of SC), particle classification, energy regression.
| e E C];;‘rs]%dc(:vion 1;1 ow il . . .
Clusters feat. vector jd]acxl;y 1:Inal;rlx i .Self—Attenftion. Sgﬁ%&? Tensors with dimensions | |
e T e ' { - Same network to identify the flavor of the particle.
_ Outputs
[  Cluster - Extra dataset: sample containing jets.
c]assDi:;i\T(;a]ltion W ‘1'44] ——» Tensor flow
S jN | e + Skinped connection - Goal: classify jets/electrons/photons.
et - Transfer Learning was used to re-train only the ID part of the network to avoid
luster indow Con nation .
[WNIM] assitcaton (W 11 ctassiation (" 1 (D) concona performance degradation for electrons/photons.
X Aggregation (sum over
clusters dimension)

RESULTS: PARTICLE CLASSIFICATION

RESULTS: ENERGY RESOLUTION

Resolution of tr]e rgconstructed uncorrected SuperCluster energy (Ez,,) divided by the true - Particle classification performance (DeepSC model) for jet vs. photon (left) and photon
energy deposits in ECAL (Eg,,,) versus: vs. electron samples (right).
- the gen-level particle position N, | (top) - Only ECAL variables are used.
- the transverse energy of the gen-level particle E{%e" (center) - High performance for jet vs. photon discrimination.
: : : M Its in CMS-DP-2022-032
- the number of simulated PU interactions (bottom) ore results in CMS-DP-2022-03 o . o n
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Significantly improved resolution, particularly for low E; signals and at high PU. Photon fake rate Electron fake rate
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