

FAKULTÄT FÜR MATHEMATIK, INFORMATIK UND NATURWISSENSCHAFTEN

REFINING CMS FAST SIMULATION USING MACHINE LEARNING

Moritz WOLF, Lars STIETZ, Peter SCHLEPER, Patrick L.S. CONNOR, Samuel BEIN on behalf of the CMS Collaboration

Motivation

Get the performance of FullSim at the price of FastSim by refining with ML methods \rightarrow here <u>regression</u> approach

Main challenge **FastSim & FullSim are (partially)** stochastically independent

- •ResNet: learn residual corrections
- Combination of two loss terms:
- 0) MMD: Maximum Mean Discrepancy (compare ensembles)
- 1) MSE: Mean Squared Error (compare jet pairs directly)
- → MDMM: Modified Differential Method of Multipliers (ensures convergence with SGD)

The Modified Differential Method of Multipliers

 $L(\theta,\lambda) = L_0(\theta) - \lambda(\epsilon - L_1(\theta))$

CMS Simulation Preliminary				(13 TeV)

https://www.engraved.blog/how-we-can-make-machine-learning-algorithms-tunable/

•Gradient descent for θ parameters •Gradient ascent for λ hyperparameter \rightarrow damped to avoid oscillations on Pareto front

> The refinement obtained with this method is now available for production of FastSim samples at CMS!

Application to heavy-flavour discriminants (DeepJet) •1D distributions and correlations are refined

 Correlations to kinematic variables are also treated

FastSim refined

FullSim

FastSim

