Prompt neutrinos from the atmosphere to the forward region of LHC

W. Bai, M. Diwan, Maria Vittoria Garzelli, M.-H. Reno, Y. S. Jeong

Hamburg Universität, II Institut für Theoretische Physik

mainly on the basis of [arXiv:2212.07865[hep-ph]]

EPS-HEP2023 conference Hamburg, August 20 - 25, 2023

Underlying concept: prompt ν production

from V. Goncalves et al. [arXiv:2103.05503]

* The mechanisms for prompt ν production in the atmosphere (above) is the same as for LHC collisions, except that the latter are induced by pp interactions instead of CR + Air (that we in any case approximate as superposition of pA, in turn approximated in terms of pp and pn).

Atmospheric neutrino fluxes

CR + Air interactions:

- AA' interaction approximated as A NA' interactions (super position);
- NA' approximated as A' NN interactions: up to which extent is this valid ?
- * conventional neutrino flux:
 - $NN \rightarrow u, d, s, \bar{u}, \bar{d}, \bar{s} + X \rightarrow \pi^{\pm}, K^{\pm} + X' \rightarrow \nu_{\ell}(\bar{\nu}_{\ell}) + \ell^{\pm} + X',$
 - $NN \quad \rightarrow \quad u, d, s, \bar{u}, \bar{d}, \bar{s} + \mathsf{X} \quad \rightarrow \quad \mathsf{K}^0_{\mathcal{S}}, \ \mathsf{K}^0_L + \mathsf{X} \quad \rightarrow \quad \pi^\pm + \ell^\mp + \nu_{(\underline{s})} + \mathsf{X}$
 - $NN \rightarrow u, d, s, \bar{u}, \bar{d}, \bar{s} + X \rightarrow \textit{light hadron} + X' \rightarrow \nu(\bar{\nu}) + \check{X''}$
- * prompt neutrino flux:

 $\begin{array}{ll} NN & \rightarrow & c, b, \bar{c}, \bar{b} + \mathsf{X} & \rightarrow & \textit{heavy-hadron} + \mathsf{X}' & \rightarrow & \nu(\bar{\nu}) + \mathsf{X}'' + \mathsf{X}' \\ \text{where the decay to neutrino occurs through semileptonic and leptonic decays:} \\ D^+ \rightarrow e^+ \nu_e \mathsf{X}, \quad D^+ \rightarrow \mu^+ \nu_\mu \mathsf{X}, \\ D^\pm_s \rightarrow \nu_\tau(\bar{\nu}_\tau) + \tau^\pm, & \text{with further decay } \tau^\pm \rightarrow \nu_\tau(\bar{\nu}_\tau) + \mathsf{X} \end{array}$

proper decay lenghts: $c\tau_{0,\pi^{\pm}} = 780$ cm, $c\tau_{0,K^{\pm}} = 371$ cm, $c\tau_{0,D^{\pm}} = 0.031$ cm Critical energy $\epsilon_h = m_h c^2 h_0 / (c \tau_{0,h} \cos(\theta))$, above which hadron **decay** probability is suppressed with respect to its **interaction** probability:

 $\epsilon_{\pi}^{\pm} < \epsilon_{K}^{\pm} << \epsilon_{D} \Rightarrow$ conventional flux is suppressed with respect to prompt one, for energies high enough, due to finite atmosphere height h_{0} .

$(u_{\mu}+ar{ u}_{\mu})$ atmospheric fluxes: conventional ightarrow prompt transition

- * Atmospheric ν from solving a system of coupled differential eqs. for the variation of fluxes of different particles as a function of the atmospheric depth.
- * Honda-2007 conventional flux reweighted with respect to a more modern CR primary spectrum (H3a).
- * central GM-VFNS, PROSA, BERSS and GMS flux predictions all yield to a very similar transition point $E_{\nu} \sim (6-9) \cdot 10^5$ GeV.
- * Transition prompt conventional absent at colliders

Experiments for detecting high -energy neutrinos

* Atmospheric neutrinos at ANTARES, IceCube, KM3NeT, Baikal-GVD... track / shower events from CC and NC ν induced DIS in ice/water.

* LHC neutrinos at SND@LHC and Faser ν , also sensitive to CC and NC ν induced DIS, but in heavier target (emulsion)

FAR FORWARD LHC EXPERIMENTS

The existing caverns UJ12 and UJ18 and adjacent tunnels are good locations for experiments along the LOS: 480 m from ATLAS and shielded from the ATLAS IP by ~100 m of rock.

ATLAC

SND: approved March 2021

U.J18

FASER: approved March 2019 LC FASERv: approved December 2019

LHC

Particle Fluxes at far-forward LHC experiments

* Not all kinds of particles produced in the forward region of the LHC IP can be seen at the location of the experiments: LHC optical elements and rock are on the way.

* Among the particles produced at the IP or nearby, forward ν , μ and some kinds of BSM particles will reach the detectors.

* ν forward fluxes: intense and very energetic, with $\mathcal{O}(\text{TeV})$ particles (peak in the energy spectrum much larger than for fluxes seen in other accelerator neutrino experiments, like e.g. DUNE).

* ν : search complementary to searches at ATLAS/CMS/LHCb for which ν are just "missing energy".

* BSM LLPs: searches in the low mass / large $c\tau^0$ domain, complementary to searches at ATLAS/CMS/LHCb for which LLPs decaying beyond the spatial limits of the detector infrastructure are "missing energy".

* Present far-forward experiments limitations: limited size.

Possibilities for a FPF at the LHC

- dedicated facility
- enlargement of one of the existing caverns with alcoves

M.V. Garzelli et al.

Prompt u in the atmosphere and at LHO

presented at the APS Meeting "Quarks to Cosmos", April 2021

How to disentangle particle fluxes from particle cross-sections ?

- * The detectors will measure observables from the **convolution** of **fluxes** (production + propagation) and **interaction** σ with target.
- * Capability to distinguish might be more important for SM precision constraints than for BSM searches...
- \ast For example, SM objectives of the LHC ν experiments may include:
 - Constraining forward particle production in *pp* collisions (of interest for better modelling soft physics and tuning the related parameters in MC event generators): it works well under the assumption: "we precisely know neutrino cross-sections".
 - Constraining PDFs/nPDFs through neutrino DIS with target in detector (of interest for SM and BSM programs at HL-LHC and for atmospheric prompt neutrinos): it works under the assumption: "we precisely know neutrino fluxes".

MC predictions of energy distributions of CC DIS $(\nu + \bar{\nu})$ -induced events

from SND@LHC technical proposal (2021)

* Energy spectra of the different kinds of CC DIS interacting neutrinos. The normalisation corresponds to $L_{int} = 150 \text{ fb}^{-1}$ and 830 Kg of Tungsten.

* No conventional to prompt neutrino transition in the energy spectra for ν -events at colliders (π , K, D all decay in the vacuum).

* No conventional contribution to ν_{τ} in both cases.

Prompt u in the atmosphere and at LHC

Energy distribution of forward $u_{\tau} + \bar{\nu}_{\tau}$

- * direct decay and chain decay contribute to the total in different energy regions
- * contributions from *B* meson decays are one-two order of magnitude smaller than those from *D* mesons.
- * What are the dominant uncertainties on these distributions ?

Heavy-quark production in hadronic collisions

* Heavy quarks are mostly produced in pairs in the Standard Model. * This process is dominated by QCD effects.

* Collinear factorization theorem is assumed: $d\sigma(N_1N_2 \rightarrow Q\bar{Q} + X) = \sum_{ab} PDF_a^{N_1}(x_a, \mu_F)PDF_b^{N_2}(x_b, \mu_F) \otimes \partial \hat{\sigma}_{ab \rightarrow Q\bar{Q}X'}(x_a, x_b, \mu_F, \mu_R, m_Q)$

 $d\hat{\sigma}$: differential perturbative partonic hard-scattering cross-section,

 μ_F , μ_R reabsorb IR and UV divergences,

PDFs: perturbative evolution with factorization scale μ_F , non-perturbative dependence on $x = p^+/P_N^+$.

QCD uncertainties

- * μ_F and μ_R choice: no univocal recipe.
- * Approximate knowledge of heavy-quark mass values m_Q (SM input parameters).
- * Choice of the Flavour Number Scheme (several possibilities).
- * PDF $(+ \alpha_{S}(M_{Z}))$ fits to experimental data.

13/21

Energy distribution of CC ($\nu_{\tau} + \bar{\nu}_{\tau}$) events

- * Huge uncertainty band from state-of-the-art QCD calculations.
- * Missing higher-order pQCD contributions are probably large.
- * In case of bottom production, uncertainty is smaller (+60%, -20%) than for charm (+300%, -60%) in relation to the fact that $m_b > m_c$ $\Rightarrow \alpha_S(\mu_R = m_b) < \alpha_S(\mu_R = m_c).$
- * Additional uncertainties due to focus in forward region.

e

ν fluxes in the atmosphere vs. LHC

* production mechanisms: the same as at the LHC, complicated by the presence of nuclear effects in pO collisions in the atmosphere.

* E_{ν} energy range: higher, because the most energetic CR interact with the atmosphere at $\sqrt{s_{NN,CR}} \sim 300$ TeV, whereas $\sqrt{s_{NN,LHC}} = 13$ - 14 TeV,

* Rapidity coverage probed: wider in the atmosphere, than in far-forward ν experiments at the LHC ($\eta_{\nu} > 7$)

 \Rightarrow Importance of very forward physics aspects is enhanced in collider studies with forward experiments, w.r.t. neutrino telescopes.

* Complication at LHC: geometry of the line beam affects ν_e and ν_μ fluxes. ν_τ unaffected, like in the atmosphere.

Prompt ν fluxes: uncertainties and IceCube upper limits

* Theory uncertainties on prompt ν are large (due not only to QCD, but also to CR composition)

* IceCube has put some constraints on prompt neutrinos.

Prompt ν fluxes and LHC phase-space coverage

* To connect to prompt ν fluxes at the PeV, LHC measurements of charm production should focus on the region $4 < y_c < 7$.

* The $\sqrt{s} = 14$ TeV at LHC is in any case a limitation, FCC would be better (see also analysis in V. Goncalves et al, [arXiv:1708.03775]).

* Neutrinos detected in far-forward experiments at LHC give us any useful information ? \Rightarrow Explore the connection between (E_{ν} , y_{ν}) and y_c .

Prompt ν fluxes at the LHC

* At the LHC, charmed mesons with 4 $< y_c < 7$ give rise to neutrino populating a wide rapidity spectrum, with a maximum around $\eta_{\nu} \sim 5$.

* These neutrinos constitutes the majority of neutrinos for $\eta_{\nu} \gtrsim 7.2$ (region probed by SND@LHC, and at future FPF).

* The energy spectrum of these neutrinos is peaked at $\sim 100 \text{ GeV}$ in CM frame, but extends also to the TeV. For $E_{\nu} \sim 700 \text{ GeV}$ half neutrinos at the LHC come from charm with $4.5 < y_c < 7.2$, whereas another half come from charm with $y_c > 7.2$. On the other hand, most energetic neutrinos at the LHC come from charmed mesons with higher rapidities.

M.V. Garzelli et al

Prompt ν in the atmosphere and at LHC

Prompt ν fluxes and large-x PDFs

from V. Goncalves et al. [arXiv:1708.03775]

 \ast A robust estimate of large \varkappa effects is important for determining the normalization of prompt neutrino fluxes

* Region particularly relevant: 0.2 < x < 0.8, partly testable through ν experiments at the LHC.

* On the other hand, for ν at the PeV scale, knowledge of PDF down to $x>10^{-6}$ is enough.

PDFs uncertainties at low and large-x and x coverage of forward ν LHC exp.

W. Bai et al., [arXiv:2212.07865]

SND@LHC technical proposal (2021)

* Differences in gluon PDFs at large x are not covered by the uncertainties associated to each single PDF set.

* The coverage of forward ν experiments can help constraining PDFs at extreme x-values, actually more extreme than what is needed for atmospheric prompt ν at the PeV scale.

Conclusions

* There is some kinematical overlap between the charm hadron production region explorable in far-forward experiments at the LHC and the one explorable in VLV ν T's.

* Atmospheric ν 's with $E_{\nu,LAB} \sim \mathcal{O}(\text{PeV})$ mostly come from charm produced within LHC \sqrt{s} in the rapidity range 4.5 $< y_c < 7.2$, which in turn produce neutrinos even in the ν rapidity range of the SND@LHC detector $\eta_{\nu} > 7.2$ and future (like FPF).

- * If one builds a detector (ADV-SND@LHC ?) in the range 4 $<\eta_{\nu}<$ 6:
 - even better connection with LHC data (crucial for QCD people to better understand the interplay between perturbative and non-perturbative QCD effects)
 - ${\scriptstyle \bullet}$ best overlap for the present region of interest for prompt ν fluxes

