Beam Dynamics Correction to the Anomalous Spin Precession Frequency in the Muon g-2 experiment at Fermilab

On Kim On behalf of the Muon g - 2 Collaboration EPS-HEP 2023 2023 Aug. 21^{st}

Introduction

• Measurement of ω_a was covered in detail in Sean's talk.

Measurement of the muon anomalous precession frequency \$\omega_a\$ in the Fermilab \$g-2\$ experiment	Sean Foster
Hörsaal C, Historic main building	16:45 - 17:02

• Magnetic field measurement was covered in detail in Saskia's talk.

Measurement of the precision magnetic field in the Fermilab Muon g–2 experiment	Saskia Charity
Hörsaal C, Historic main building	17:02 - 17:19

• Summary of the new result will be given by Graziano tomorrow (plenary).

News on muon g-2	Graziano Venanzoni
Audimax, Universität Hamburg	15:15 - 15:30

• I am going to talk about the beam dynamics correction to ω_a .

Quick Recap: ω_a measurement from Wiggle Plot

- Self-analyzing muon decay: Parity-violating weak decay causes the high energy decay positrons are preferred to be emitted along the muon spin direction.
- Detected e^+ time spectrum wiggles at the spin precession frequency ω_a .

Quick Recap: ω_a measurement from Wiggle Plot

• Fitting the wiggle plot to extract ω_a^m .

Beam Dynamics Correction to ω_a^m

• Is measured ω_a^m precisely the spin precession frequency of the muons? In practice, NO!

$$\omega_{a} = \omega_{a}^{m} \left(1 + C_{e} + C_{p} + C_{pa} + C_{dd} + C_{ml} \right)$$
Correction to ω_{a}
Correction to $\phi = \phi(t)$

E-field effect to off-design-momentum particles. Coupled precession effect from vertical motions. Spin precession phase changes over the muon storage due to acceptance effect, differential decay and momentum-dependent losses.

$$\cos(\omega_a^m t + \phi(t)) = \cos(\omega_a^m t + \phi_0 + \phi_1 t + \cdots)$$
$$\approx \cos((\omega_a^m + \phi_1)t + \phi_0)$$

• How significant those corrections are?

BD Corrections to ω_a^m	Net Correction [ppb]	Net Uncertainty [ppb]	Total Systematic Uncertainty on a_{μ} [ppb]
Run-1	500	93 - > factor of 2	159
Run-2/3	580	40 🛩 improvement	74

Electrostatic Quadrupole (ESQ)

- The electrostatic quadrupoles (ESQ) are used to focus the beam vertically.
- Four sections cover 43% of the circumference.
- Each plate is charged to ± 18 kV.

Straw Trackers

- The muon distribution is measured by the straw tracker.
 - A straw is an ionization chamber filled with an Ar-Ethane gas and a central wire at 1.6 kV.
 - It finds the trajectories of decay positrons, which are extrapolated to reconstruct the muon distribution.

E-field Correction C_e $\omega_a^m (1 + C_e + C_p + C_{pa} + C_{dd} + C_{ml})$

• The original spin precession frequency is much more complicated. Imposing the accelerator conditions $(\mathbf{\beta} \cdot \mathbf{B} = \mathbf{\beta} \cdot \mathbf{E} = 0)$ and neglecting the EDM terms, one gets _____Cancels out for the magic momentum (p_m) muons.

$$\boldsymbol{\omega}_a \approx -\frac{q}{m} \left[a \mathbf{B} - \left(a - \frac{1}{\gamma^2 - 1} \right) \frac{\boldsymbol{\beta} \times \mathbf{E}}{c} \right]$$

• The magic momentum $(p_m = mc/\sqrt{a})$ cancels the second term, leading to $\omega_a = a_\mu q B/m$.

• In practice, muon momenta are spread around the magic momentum.

 $\circ \Delta \omega_a / \omega_a$ coming from this term is called the E-field correction C_e .

$$C_e \approx 2n(1-n)\beta_0^2 \frac{\langle x_e^2 \rangle}{R_0^2}$$

• *n* is the weak focusing field index $(n = \frac{\partial E}{\partial x} \frac{r_0}{vB_0})$.

• The radial equilibrium position (x_e) is proportional to the momentum offset.

E-field Correction C_e $\omega_a^m (1 + C_e + C_p + C_{pa} + C_{dd} + C_{ml})$

• The radial equilibrium distribution can be measured by Fast Rotation Analysis.

• Fast Rotation: Signal from the bunched beam's cyclotron motion.

o The beam debunches due to the mixed cyclotron frequencies.

$$\omega_c \approx \omega_{c0} \left(1 - \frac{1}{1 - n} \frac{\Delta p}{p_0} \right)$$

 $\,\circ\,$ Debunching characteristics depend on the momentum distribution.

E-field Correction C_e: Fast Rotation Analysis

On Kim (okim@olemiss.edu)

E-field Correction Ce

 $\omega_{a}^{m} (1 + C_{e}) + C_{p} + C_{pa} + C_{dd} + C_{ml})$

- Dominant systematics: correlation between the injection time and momentum distribution of stored muons.
 - \circ Reconstruction of x_e becomes more complicated if there's a p-t correlation.
 - \circ A time-dependent kick induces the correlation (under-kick prefers high p, and over-kick prefers low p).
- Improvement after Run-1
 - Bunch-level analysis to sort out the effect of the *p*-*t* correlation.
 Complementary Tracker-based analysis.

C _e	Correction [ppb]	Uncertainty [ppb]
Run-1	489	53
Run-2/3	451	32

Pitch Correction C_p $\omega_a^m (1 + C_e + C_p) + C_{pa} + C_{dd} + C_{ml})$

• The vertical motion (pitch motion) of the muon causes the vertical spin precession.

Pitch-driven radial component of $\boldsymbol{\omega}_s$ $\boldsymbol{\omega}_{sx} \approx \psi_0 \boldsymbol{\omega}_y \sin(\boldsymbol{\omega}_y t + \boldsymbol{\phi}_y)$

• The horizontal precession (ω_a) is affected by coupled in-plane and out-of-plane precessions due to the vertical motion. In such case, $\omega_a = \omega_{cy} - \omega_{sy}$ no longer holds.

$$C_p = \frac{n}{2} \frac{\langle y^2 \rangle}{R_0^2} = \frac{n}{4} \frac{\langle A^2 \rangle}{R_0^2}$$

Pitch Correction C_p

 $\omega_{a}^{m} (1 + C_{e} + C_{p}) + C_{pa} + C_{dd} + C_{ml})$

- Estimate C_p from the amplitude distribution rather than the vertical distribution.
 - Due to the calorimeter acceptance, the vertical positions are not evenly weighted.
 - \circ This makes the measured $\langle y^2 \rangle$ systematically biased from the actual $\langle y^2 \rangle$.
 - The amplitude is reconstructed from the position distribution, including the acceptance correction.
- Dominant systematic error source: tracker alignment and reconstruction.
- Improvement after Run-1: Independent & different method analysis cross-check.

Vertical oscillation amplitude

C -	$n \langle y^2 \rangle$	$n \langle A^2 \rangle$
C_p –	$-\frac{1}{2} \frac{1}{R_0^2}$	$\overline{4} \overline{R_0^2}$

<i>C</i> _p Correction [ppb]		Uncertainty [ppb]	
Run-1	180	13	
Run-2/3	170	10	

Phase-Acceptance Correction C_{pa} $\omega_a^m (1 + C_e + C_p + C_{pa} + C_{dd} + C_{ml})$

• The g-2 phase of the accepted positrons depends on the muon decay position (x, y, ϕ) and energy.

(Exaggerated) Example "decay cones" at the different radial positions.

Unlike the blue cone, some e^+ in the red cone are not accepted because of the finite geometry of the calorimeter.

Accepting more inward decay e^+ than outward e^+ , the muon spin maximizing the number of accepted e^+ (\approx phase) is altered accordingly.

The phase of the accepted e^+ wiggle depends on the decay positions. This itself does not bias ω_a unless the beam profile changes over time. Phase-Acceptance Correction C_{pa} $\omega_a^m (1 + C_e + C_p + C_{pa} + C_{dd} + C_{ml})$

• The (azimuthally-averaged) muon position distribution does change over time.

• The dominant effect from Run-1 came from the early-to-late vertical distribution change.

 $\mathrm{d}t$

Phase-Acceptance Correction C_{pa} $\omega_a^m (1 + C_e + C_p + C_{pa} + C_{dd} + C_{ml})$

• All acceptance information is incorporated to compute the time-varying average phase.

$$\varphi_{pa}^{c}(t) = \arctan \frac{\sum_{ij} M^{c}(x_{i}, y_{j}, t) \cdot \varepsilon^{c}(x_{i}, y_{j}) \cdot A^{c}(x_{i}, y_{j}) \cdot \sin(\varphi_{pa}^{c}(x_{i}, y_{j}))}{\sum_{ij} M^{c}(x_{i}, y_{j}, t) \cdot \varepsilon^{c}(x_{i}, y_{j}) \cdot A^{c}(x_{i}, y_{j}) \cdot \cos(\varphi_{pa}^{c}(x_{i}, y_{j}))}$$
Acceptance map

• In Run-1, the phase-acceptance effect was amplified by the damaged ESQ resistors.

 $\,\circ\,$ The damaged resistors were replaced before Run-2.

 \circ It significantly improved the beam early-to-late stability, and so are C_{pa} and ΔC_{pa} accordingly.

C_{pa}	Correction [ppb]	Uncertainty [ppb]
Run-1	-158	75
Run-2/3	-27	13

Time [µs]

Spin-Momentum & Momentum-Time Correlations

• Phase changes due to the coupled effects from $\phi \cdot \langle p \rangle$ correlation & $\langle p \rangle \cdot t$ correlation.

 $\mathrm{d}\phi$

• Each correlation can be decomposed as follows:

Beamline Upstream dipole bending magnet.

p-x Inflector geometry (especially radial coordinates).

*p-t*₀
Head-to-tail phase difference &
Head-to-tail stored momentum distribution.

p-x

Spin-Momentum & Momentum-Time Correlations

• Phase changes due to the coupled effects from $\phi \cdot \langle p \rangle$ correlation & $\langle p \rangle \cdot t$ correlation.

 $\mathrm{d}\phi$

 $\mathrm{d}\phi$

• Each correlation can be decomposed as follows:

Differential decay Muons have different lifetimes

depending on their energies.

Momentum-dependent loss Muon loss spectrum depends on the momentum.

Differential Decay Correction C_{dd} Muon Loss Correction C_{ml}

$$\omega_a^m \left(1 + C_e + C_p + C_{pa} + C_{dd} + C_{ml}\right)$$

- In Run-1, we neglected C_{dd} . We were at the early stage of understanding the p-x and p- t_0 effects and the beamline C_{dd} was negligible compared to C_{ml} which was enhanced due to the damaged resistors.
- Dominant systematics comes from the bunch-by-bunch deviations in $(d\phi/d\langle p \rangle)_{p-t_0}$.

C _{dd}	Correction [ppb]	Uncertainty [ppb]	C_{ml}	Correction [ppb]	Uncertainty [ppb]
Run-1			Run-1	-11	5
Run-2/3	-15	17	Run-2/3	0	3

Summary

- Beam dynamics corrections to anomalous spin precession frequency ω_a^m .
- The net uncertainty of the BD corrections was reduced by more than a factor of 2 in Run-2/3.

EPS-HEP 2023

Acknowledgement

- Department of Energy (USA)
- National Science Foundation (USA)
- Istituto Nazionale di Fisica Nucleare (Italy)
- Science and Technology Facilities Council (UK)
- Royal Society (UK)
- Leverhulme Trust (UK)
- European Union's Horizon 2020
- Strong 2020 (EU)
- German Research Foundation (DFG)
- National Natural Science Foundation of China
- MSIP, NRF and IBS-R017-D1 (Republic of Korea)

Backups

Measurement of the muon anomalous precession frequency \$\omega_a\$ in the Fermilab \$g-2\$ experiment	Sean Foster
Hörsaal C, Historic main building	16:45 - 17:02
Measurement of the precision magnetic field in the Fermilab Muon g–2 experiment	Saskia Charity
Hörsaal C, Historic main building	17:02 - 17:19
Beam dynamics corrections to measurements of the muon anomalous magnetic moment	On Kim
Hörsaal C, Historic main building	17:19 - 17:36

News on muon g-2	Graziano Venanzoni
Audimax, Universität Hamburg	15:15 - 15:30

17:00

E-field Correction C_e: Fast Rotation Analysis

Fourier Method (Frequency Domain)

 $\hat{S}(\omega) = 2 \int_0^\infty S(t + t_0) \cos(\omega t) dt$ Tunable time-shift

- 1. Produce f_c distribution.
- 2. Identify background & optimize t_0 .
- 3. Reconstruct radial distribution.
- 4. Estimate C_e .

Fast Rotation Signal S(t)

Debunching Method (Time Domain)

$$S_j = \sum_{ik} \beta_{ijk} f_i I_k$$

i: Radial bin. *j*: (Measurement) time bin. *k*: (Injection) time bin.

 $\begin{array}{l} f_i: \mbox{Radial distribution.} \\ I_k: \mbox{Injection time distribution.} \\ \beta_{ijk}: \mbox{Model coefficient between } f_i I_k \mbox{ and } N_j. \end{array}$

Obtain β_{ijk} geometric factors. Optimize $f_i \& I_k$ with χ^2 -minimization fit. Estimate C_e .

On Kim (okim@olemiss.edu)

EPS-HEP 2023

23

E-field Correction C_e

 $\omega_{a}^{m} (1 + C_{e}) + C_{p} + C_{pa} + C_{dd} + C_{ml})$

- Improvement after Run-1
 - \circ Bunch-level analysis to sort out the effect of the p-t correlation.
 - o Complementary Tracker-based analysis.
- Momentum spread is imprinted in the radial spread "breathing," which can be seen in the tracker.

C _e	Correction [ppb]	Uncertainty [ppb]
Run-1	489	53
Run-2/3	451	32

Muon Loss Correction C_{ml}

$$\omega_{a}^{m} \left(1 + C_{e} + C_{p} + C_{pa} + C_{dd} + C_{ml}\right)$$

- Muon loss: Unwanted muon depletion due to interactions with materials during storage.
- The fraction of the muon losses can be measured by counting the triple coincidences.

Muon Loss Correction C_{ml}

 $\mathrm{d}\varphi$

 $\mathrm{d}t$

$$\omega_{a}^{m} \left(1 + C_{e} + C_{p} + C_{pa} + C_{dd} + C_{ml}\right)$$

 Momentum-dependent muon losses coupled with the spin-momentum correlation induces bias to ω_a . $\cos(\omega_{z}^{m}t + \varphi(t)) = \cos(\omega_{a}^{m}t + \varphi_{0} + \varphi_{1}t + \cdots)$

$$\begin{aligned} \cos(\omega_a \ \iota + \varphi(\iota)) &= \cos(\omega_a \ \iota + \varphi_0 + \varphi_1 \iota + \varphi_0) \\ &= \cos((\omega_a^m + \varphi_1)t + \varphi_0) \\ &= \cos((\omega_a^m + \varphi_1)t + \varphi_0) \end{aligned}$$

 $d\langle p \rangle dt$

Momentum-dependent losses

Low momenta muons are lost faster than

the high momenta muons at early times.

Spin-momentum correlation Pre-exist before the injection due to the dipole bending magnet.

Data Set	Run-1a	Run-1b	Run-1c	Run-1d
C_{ml}	-14	-3	-7	-17
Phase-momentum	2	0	1	3
Form of $l(t)$	2	0	1	1
f_{loss} function	2	1	2	2
Linear sum $(\sigma_{C_{ml}})$	6	2	4	6

Run-1:
$$C_{ml} = -11 (5) \text{ ppb}$$

Challenge in Run-1: Damaged ESQ Resistors

- The RC time constant of the ESQ charging is designed to be around 5 us.
 - o Two resistors were damaged and their resistance increased significantly. It induced slow changes to beam dynamics.
- Early-to-late BD effect
 - o The CBO (horizontal oscillation) frequency drifted in time.
 - o Vertical width changed slowly in time.

ESQ HV Trend

Time [us]

On Kim (okim@olemiss.edu)