

Triboson measurements with ATLAS and CMS

Raphaël Hulsken

On behalf of the ATLAS and CMS collaborations EPS-HEP 2023 in Hamburg

Physics motivations

- Triboson final states have small cross section, only start being accessible with the full run 2 at LHC
- Test for beyond Standard Model theory
 - Sensitivity to Anomalous Quartic Gauge Coupling (AQGC)
 - Limit to Effective Field Theories can be set
- Understand those process as they are backgrounds for further analyses in run 3 (ZH(γγ) WH(γγ))

- **First measurement** of WWy fiducial cross section with 5.6 (4.7) standard deviation observed (expected)
 - σ_{measured} = 6.0 \pm 1.0 (stat) \pm 1.0 (syst) \pm 0.9 (theo) fb (within 1.5 σ of theory prediction)

 σ_{Theory} =4.16 \pm 0.34 (scale) \pm 0.05 (PDF) fb

- Using opposite charge opposite flavor e/ μ channel with 138fb-1 at 13TeV

b-jet veto

Likelihood 2D fit on M_T ^{ww} and m_{IIy} , using SR (splitting 0 jet and >=1 jet) and 2VR

• Limit on Higgs Yukawa couplings with light quarks (u,d,s,c)

CMS

• Background treatment:

- Non prompt photon/lepton
 - j→γ, main background
 - Data driven estimation in W+jets Control Region (CR)
 - j→e, significant background

Data driven fake rate estimate in dijet CR

- Validation
 - Top+y VR with \geq 1 b-jet for both background
 - Same flavor lepton final state CR for $j \rightarrow e$ background
- WZ γ and top, reduced by b-jet veto

Process	σ_{up} pb exp.(obs.)	Yukawa couplings limits exp.(obs.)
$u\overline{u} ightarrow H + \gamma ightarrow e \mu \gamma$	0.067 (0.085)	$ \kappa_{\rm u} \le 13000 \ (16000)$
$d\overline{d} ightarrow H + \gamma ightarrow e \mu \gamma$	0.058 (0.072)	$ \kappa_{\rm d} \le 14000 \ (17000)$
$s \overline{s} ightarrow H + \gamma ightarrow e \mu \gamma$	0.049 (0.068)	$ \kappa_{\rm s} \leq 1300 \ (1700)$
$c\overline{c} \to H + \gamma \to e \mu \gamma$	0.067 (0.087)	$ \kappa_{\rm c} \le 110(200)$

EPS-HEP 2023

First measurement of WZγ cross section at 6.3 (5.0) standard deviation observed (expected)

 σ_{measured} = 2.01 ± 0.3 (stat) ± 0.16 fb (within 1.5 σ of theory prediction)

 $\sigma_{\text{Theory}} = 1.5 \pm 0.06 \text{ fb}$

- Using l'lly channel one same flavor opposite charge pair with 140fb-1 at 13TeV

```
|m_{e(w)\gamma}-m_z| > 10 \text{GeV}
```

```
m_{I(Z)I(Z)} > 81 GeV for FSR reduction
```

Profile likelihood fit of the 4 e/ μ final states (3 bins, 1SR and 2CR)

Background treatment:

- j→γ background

Reduced by $m_{e(w)\gamma}$ selection

Data driven fake rate estimate in looser identification/isolation selection CR using Z+jets sample

- j→l background

Data driven fake rate estimate in looser identification/isolation selection CR using dijet sample

- ZZy and ZZ(e→γ)

normalized with dedicated CR

• Fiducial cross section

 $\sigma_{measured} = 2.45 \pm 0.20 \text{ (stat)} \pm 0.22 \text{ (syst)} \pm 0.04 \text{ (lumi)} \text{ fb}$ measurement with 12 % precision

- Using e/ μ channel with 139fb-1 at 13TeV

 $(m_{II}+min(m_{II\gamma,1},m_{II\gamma,2}))>2M_z$ for FSR contribution removal Differential cross-sections (6 kinematic observables: E^{y1}_T , E^{y2}_T , p_T^{II} , $p_T^{II\gamma\gamma}$, $m_{\gamma\gamma}$, $m_{II\gamma\gamma}$)

- Limit set on aQGC operators using EFT approach
 - $O8_{T,1}$, $O8_{T,2}$, $O8_{T,6}$, $O8_{T,7}$ reduced up to two order of magnitude at 8TeV (Phys. Rev. D 93, 112002)
 - Clipping method used to restore unitary at large energy scale

Background treatment:

- j→γ background (main background)

data driven fake rate estimate using $Z\gamma$ +jet and Z+jet

- ttγγ with leptonic decay from top quark (second contribution)
 Normalized using CR with opposite sign e/μ pair
- Z γ + γ and Z+ $\gamma\gamma$ from pile-up

Uncertainties computed via signal simulation reweighed to pile-up background $\ensuremath{p_{\text{T}}}$ spectra

- e → y

- Ζ(ΙΙ)Η(γγ)

Estimated from simulation

EPS-HEP 2023

• Zγγ fiducial cross section

 $\sigma(Z\gamma\gamma) = 5.41^{+0.58}_{-0.55} (stat)^{+0.64}_{-0.70} (syst) \pm 0.06 (PDF + scale) \text{ fb}$ 4.8 (5.8) standard deviation observed (expected)

Wγγ fiducial cross section

 $\sigma(W\gamma\gamma)^{meas} = 13.6 \pm 1.9 \text{ (stat)} \pm 0.4 \text{ (syst)} \pm 0.08 \text{ (PDF + scale) fb}$

3.1 (4.5) standard deviation observed (expected)

- Using e/ μ channel with 137 fb-1 at 13TeV

Event removed if $|m_{e,\gamma} - m_z| < 5$ GeV or $|m_{e,\gamma\gamma} - m_z| < 5$ GeV for FSR reduction Binned likelihood fit on **diphoton** p_T **distribution**

Limit set on 10 aQGC operators using EFT approach

	${ m W}\gamma\gamma({ m TeV}^{-4})$		$ m Z\gamma\gamma(TeV^{-4})$	
Parameter	Expected	Observed	Expected	Observed
$f_{ m M2}/\Lambda^4$	[-57.3, 57.1]	[-39.9, 39.5]		
$f_{ m M3}/\Lambda^4$	[-91.8, 92.6]	[-63.8, 65.0]		
$f_{ m T0}/\Lambda^4$	[-1.86, 1.86]	[-1.30, 1.30]	[-4.86, 4.66]	[-5.70, 5.46]
$f_{ m T1}/\Lambda^4$	[-2.38, 2.38]	[-1.70, 1.66]	[-4.86, 4.66]	[-5.70, 5.46]
$f_{\mathrm{T2}}/\Lambda^4$	[-5.16, 5.16]	[-3.64, 3.64]	[-9.72, 9.32]	[-11.4, 10.9]
$f_{ m T5}/\Lambda^4$	[-0.76, 0.84]	[-0.52, 0.60]	[-2.44, 2.52]	[-2.92, 2.92]
$f_{ m T6}/\Lambda^4$	[-0.92,1.00]	[-0.60, 0.68]	[-3.24, 3.24]	[-3.80, 3.88]
$f_{ m T7}/\Lambda^4$	[-1.64, 1.72]	[-1.16, 1.16]	[-6.68, 6.60]	[-7.88, 7.72]
$f_{ m T8}/\Lambda^4$			[-0.90, 0.94]	[-1.06, 1.10]
$f_{ m T9}/\Lambda^4$	_	_	[-1.54, 1.54]	[-1.82, 1.82]

Background treatment:

- j → γ, dominant for both Wγγ and Zγγ data-driven fakes rate estimates
- $e \rightarrow \gamma$, important in W(e) $\gamma\gamma$
 - Coming from $Z\gamma$ events
 - Corrector factor computed in CR $(|m_{e,\gamma|ead} m_z| < 5 \text{ GeV removed})$ with fit on $m_{e,\gamma|ead}$
- VH($\gamma\gamma$) neglected

STDM-2018-33

- First measurement of Wyy at 5.6 (5.6) standard deviation observed (expected)
 - $\sigma_{\text{measured}} = 12.2 \pm 1.0 (stat)^{+1.9}_{-1.8}$ (syst) ± 0.1 (lumi) fb in agreement with the SM prediction
- Using e/μ channel with 140fb⁻¹ at 13 TeV
 - B-jet veto and $E_{T^{miss}} > 40$ GeV selection
 - 4 bin likelihood fit (using topCR, topVR and SR)

Background treatment:

j→γ main background

2D (leading/sub-leading) template fit of photon isolation energy in data

- e→v

Data driven fake rate estimate in $Z \rightarrow ee/ey$ CR

- Top background
 - Reduced via b veto
 - **Dedicated CR** (with >= 1 b-jet) for fit constrain
 - Low E_{T} region (with >= 1 b-jet) for validation

Key points

- 3 New first observations: Wγγ_[1] and WZγ_[2] by ATLAS and WWγ_[3] by CMS
- Limit set on EFT aQGC operators with Zγγ_[4] analysis by ATLAS and Vγγ_[5] analysis by CMS
- Result in agreement with SM
- Limit on Higgs coupling with light quarks (u,d,s,c) set with WWγ_[3] analysis by CMS
- New result to come with the ongoing Run 3
- Not covered in this talk
 - WVV[6], WWW[7] analysis by ATLAS
 - $VVV_{[8]}$ analysis by CMS

References

- [1] ATLAS Collaboration (2023). Observation of Wyy triboson production in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector. CERN.
- [2] ATLAS Collaboration (2023). Observation of WZ γ production in pp collisions $\sqrt{s} = 13$ TeV with the ATLAS detector. CERN.
- [3] CMS Collaboration (2023). Observation of WWy production and constraints on Higgs couplings to light quarks in proton-proton collisions at $\sqrt{s} = 13$ TeV. CERN.
- [4] ATLAS Collaboration. (2022). Measurement of $Z\gamma\gamma$ production in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector. CERN.
- [5] CMS Collaboration (2021). Measurements of the pp \rightarrow Wyy and pp \rightarrow Zyy cross sections at \sqrt{s} = 13 TeV and limits on anomalous quartic gauge couplings. Journal of High Energy Physics.
- [6] ATLAS Collaboration (2019). Evidence for the production of three massive vector bosons with the ATLAS detector. Physics Letters B, 798, 134913.
- [7] ATLAS Collaboration (2022). Observation of WWW Production in pp Collisions at $\sqrt{s} = 13$ TeV with the ATLAS Detector. Phys. Rev. Lett., 129, 061803.
- [8] CMS Collaboration (2020). Observation of the Production of Three Massive Gauge Bosons at √s = 13 TeV. Phys. Rev. Lett., 125, 151802