1

\square

Triboson measurements with ATLAS and CMS

Raphaël Hulsken
On behalf of the ATLAS and CMS collaborations EPS-HEP 2023 in Hamburg

$$
\rightarrow-\sin
$$

 -
,

.

Physics motivations

- Triboson final states have small cross section, only start being accessible with the full run 2 at LHC
- Test for beyond Standard Model theory
- Sensitivity to Anomalous Quartic Gauge Coupling (AQGC)
- Limit to Effective Field Theories can be set
- Understand those process as they are backgrounds for

VV/V

CMS PAS SMP-22-006

- First measurement of WWy fiducial cross section with 5.6 (4.7) standard deviation observed (expected)
$\sigma_{\text {measured }}=6.0 \pm 1.0$ (stat) ± 1.0 (syst) ± 0.9 (theo) fb (within 1.5σ of theory prediction)

$$
\sigma_{\text {Theory }}=4.16 \pm 0.34 \text { (scale) } \pm 0.05 \text { (PDF) fb }
$$

- Using opposite charge opposite flavor e/ μ channel with $138 \mathrm{fb}-1$ at 13 TeV b-jet veto
Likelihood 2D fit on $M_{T} w w$ and $m_{\| y}$, using SR (splitting 0 jet and $>=1$ jet) and 2VR
- Limit on Higgs Yukawa couplings with light quarks (u,d,s,c)

Background treatment:

- Non prompt photon/lepton
- $j \rightarrow \gamma$, main background

Data driven estimation in W+jets Control Region (CR)

- $j \rightarrow e$, significant background

Data driven fake rate estimate in dijet CR

- Validation

Top $+y$ VR with ≥ 1 b-jet for both background
Same flavor lepton final state CR for $\mathrm{j} \rightarrow \mathrm{e}$ background - WZy and top, reduced by b-jet veto

Process	$\sigma_{\text {up }}$ pb exp.(obs.)	Yukawa couplings limits exp.(obs.)
$\mathrm{u} \overline{\mathrm{u}} \rightarrow \mathrm{H}+\gamma \rightarrow \mathrm{e} \mu \gamma$	$0.067(0.085)$	$\left\|\kappa_{\mathbf{u}}\right\| \leq 13000(16000)$
$\mathrm{d} \overline{\mathrm{d}} \rightarrow \mathrm{H}+\gamma \rightarrow \mathrm{e} \mu \gamma$	$0.058(0.072)$	$\left\|\kappa_{\mathrm{d}}\right\| \leq 14000(17000)$
$\mathrm{s} \overline{\mathrm{s}} \rightarrow \mathrm{H}+\gamma \rightarrow \mathrm{e} \mu \gamma$	$0.049(0.068)$	$\left\|\kappa_{\mathrm{s}}\right\| \leq 1300(1700)$
$\mathrm{c} \overline{\mathrm{c}} \rightarrow \mathrm{H}+\gamma \rightarrow \mathrm{e} \mu \gamma$	$0.067(0.087)$	$\left\|\kappa_{\mathrm{c}}\right\| \leq 110(200)$

STDM-2019-17

- First measurement of WZy cross section at 6.3 (5.0) standard deviation observed (expected)
$\sigma_{\text {measured }}=2.01 \pm 0.3$ (stat) $\pm 0.16 \mathrm{fb}$ (within 1.5σ of theory prediction)
$\sigma_{\text {Theory }}=1.5 \pm 0.06 \mathrm{fb}$
- Using l'lly channel one same flavor opposite charge pair with $140 \mathrm{fb}^{-1}$ at 13 TeV
$\left|m_{e(w) y}-m_{z}\right|>10 G e V$
$m_{|(z)|(z)}>81 \mathrm{GeV}$ for FSR reduction
Profile likelihood fit of the $4 \mathrm{e} / \mu$ final states (3 bins, 1 SR and 2 CR)

- Background treatment:

- $j \rightarrow \gamma$ background

Reduced by $\mathrm{m}_{\mathrm{e}(\mathrm{w})}$ selection
Data driven fake rate estimate in looser identification/isolation selection CR using $\mathrm{Z}+$ jets sample

- $j \rightarrow$ background

Data driven fake rate estimate in looser identification/isolation selection CR using dijet sample

- ZZy and ZZ(e $\rightarrow \gamma$)
normalized with dedicated CR

Phys. J. C 83, 539

- Background treatment:

$-j \rightarrow \gamma$ background (main background) data driven fake rate estimate using $\mathrm{Z} \gamma+\mathrm{jet}$ and $\mathrm{Z}+$ jet

- ttyy with leptonic decay from top quark (second contribution) Normalized using CR with opposite sign e/ μ pair
- $Z \gamma+\gamma$ and $Z+\gamma \gamma$ from pile-up

Uncertainties computed via signal simulation reweighed to pile-up background p_{T} spectra

- e $\rightarrow \mathrm{y}$

Modelled by ZZ and WZY simulation

- Z(II)H(Y)

Estimated from simulation of magnitude at 8 TeV (Phys. Rev. D 93, 112002)

- Clipping method used to restore unitary at large energy scale

- Zyy fiducial cross section
$\sigma(Z \gamma \gamma)=5.41_{-0.55}^{+0.58}(\text { stat })_{-0.70}^{+0.64}($ syst $) \pm 0.06$ (PDF + scale $) \mathrm{fb}$
4.8 (5.8) standard deviation observed (expected)
- Wyy fiducial cross section
$\sigma(\mathrm{W} \gamma \mathrm{Y}$) meas $=13.6 \pm 1.9$ (stat) ± 0.4 (syst) ± 0.08 (PDF + scale) fb
3.1 (4.5) standard deviation observed (expected)
- Using e/ μ channel with $137 \mathrm{fb}^{-1}$ at 13 TeV

Event removed if $\left|m_{e, y}-m_{z}\right|<5 \mathrm{GeV}$ or $\left|m_{e, y y}-m_{z}\right|<5 \mathrm{GeV}$ for FSR reduction Binned likelihood fit on diphoton p_{T} distribution

- Limit set on 10 aQGC operators using EFT approach

$\mathrm{W} \gamma \gamma\left(\mathrm{TeV}^{-4}\right)$				
Observed	Expected	Observed		
Parameter	Expected	Obs $\left(\mathrm{TeV}^{-4}\right)$		
$f_{\mathrm{M} 2} / \Lambda^{4}$	$[-57.3,57.1]$	$[-39.9,39.5]$	-	-
$f_{\mathrm{M} 3} / \Lambda^{4}$	$[-91.8,92.6]$	$[-63.8,65.0]$	-	-
$f_{\mathrm{T} 0} / \Lambda^{4}$	$[-1.86,1.86]$	$[-1.30,1.30]$	$[-4.86,4.66]$	$[-5.70,5.46]$
$f_{\mathrm{T} 1} / \Lambda^{4}$	$[-2.38,2.38]$	$[-1.70,1.66]$	$[-4.86,4.66]$	$[-5.70,5.46]$
$f_{\mathrm{T} 2} / \Lambda^{4}$	$[-5.16,5.16]$	$[-3.64,3.64]$	$[-9.72,9.32]$	$[-11.4,10.9]$
$f_{\mathrm{T} 5} / \Lambda^{4}$	$[-0.76,0.84]$	$[-0.52,0.60]$	$[-2.44,2.52]$	$[-2.92,2.92]$
$f_{\mathrm{T} 6} / \Lambda^{4}$	$[-0.92,1.00]$	$[-0.60,0.68]$	$[-3.24,3.24]$	$[-3.80,3.88]$
$f_{\mathrm{T} 7} / \Lambda^{4}$	$[-1.64,1.72]$	$[-1.16,1.16]$	$[-6.68,6.60]$	$[-7.88,7.72]$
$f_{\mathrm{T} 8} / \Lambda^{4}$	-	-	$[-0.90,0.94]$	$[-1.06,1.10]$
$f_{\mathrm{T} 9} / \Lambda^{4}$	-	-	$[-1.54,1.54]$	$[-1.82,1.82]$

- Background treatment:

- $j \rightarrow \gamma$, dominant for both $W_{\gamma \gamma}$ and $Z_{\gamma \gamma}$ data-driven fakes rate estimates
- e $\rightarrow \gamma$, important in W(e) $\gamma \gamma$
- Coming from $Z \gamma$ events
- Corrector factor computed in CR ($\left|m_{e, y l e a d ~}-\mathrm{m}_{\mathrm{z}}\right|<5 \mathrm{GeV}$ removed) with fit on $\mathrm{m}_{\text {e, lead }}$
- VH($\mathrm{\gamma} \gamma$) neglected

STDM-2018-33

- First measurement of WYy at 5.6 (5.6) standard deviation observed (expected)
$-\sigma_{\text {measured }}=12.2 \pm 1.0(\text { stat })_{-1.8}^{1.9}$ (syst) ± 0.1 (lumi) fb in agreement with the SM prediction
- Using e/ μ channel with $140 \mathrm{fb}^{-1}$ at 13 TeV
B-jet veto and E_{T} miss $>40 \mathrm{GeV}$ selection
4 bin likelihood fit (using topCR, topVR and SR)

- Background treatment:

- $j \rightarrow \gamma$ main background

2D (leading/sub-leading) template fit of photon isolation energy in data
$-\mathrm{e} \rightarrow \gamma$
Data driven fake rate estimate in $\mathrm{Z} \rightarrow \mathrm{ee} / \mathrm{ey} \mathrm{CR}$

- Top background
- Reduced via b veto
- Dedicated CR (with >= 1 b -jet) for fit constrain
- Low E_{T} miss region (with >= 1 b -jet) for validation

Key points

- 3 New first observations: $W_{\gamma} \gamma_{[1]}$ and $W^{W} \boldsymbol{Y}_{[2]}$ by ATLAS and $\mathbf{W W}{ }_{\gamma^{[3]}}$ by CMS
- Limit set on EFT aQGC operators with $Z_{Y} Y_{[4]}$ analysis by ATLAS and $V^{\gamma} \gamma_{[5]}$ analysis by CMS
- Result in agreement with SM
- Limit on Higgs coupling with light quarks (u, d, s, c) set with WW ${ }^{[3]}$ analysis by CMS
- New result to come with the ongoing Run 3
- Not covered in this talk
- $W^{W} V_{[6]}, W^{[7]}{ }_{[7]}$ analysis by ATLAS
- $\mathrm{VVV}^{[8]}$ analysis by CMS

References

- [1] ATLAS Collaboration (2023). Observation of $W \gamma \gamma$ triboson production in proton-proton collisions at $\sqrt{ } \mathrm{s}=13 \mathrm{TeV}$ with the ATLAS detector. CERN.
- [2] ATLAS Collaboration (2023). Observation of WZy production in pp collisions $\sqrt{ } \mathrm{s}=13 \mathrm{TeV}$ with the ATLAS detector. CERN.
- [3] CMS Collaboration (2023). Observation of WWY production and constraints on Higgs couplings to light quarks in proton-proton collisions at $\sqrt{ } \mathrm{s}=13 \mathrm{TeV}$. CERN.
- [4] ATLAS Collaboration. (2022). Measurement of $Z \gamma Y$ production in pp collisions at $\sqrt{ } \mathrm{s}=13 \mathrm{TeV}$ with the ATLAS detector. CERN.
- [5] CMS Collaboration (2021). Measurements of the $p p \rightarrow W \gamma \gamma$ and $p p \rightarrow Z \gamma \gamma$ cross sections at $\sqrt{ } s=$ 13 TeV and limits on anomalous quartic gauge couplings.Journal of High Energy Physics.
- [6] ATLAS Collaboration (2019). Evidence for the production of three massive vector bosons with the ATLAS detector. Physics Letters B, 798, 134913.
- [7] ATLAS Collaboration (2022). Observation of WWW Production in pp Collisions at $\sqrt{ } \mathrm{s}=13 \mathrm{TeV}$ with the ATLAS Detector. Phys. Rev. Lett., 129, 061803.
- [8] CMS Collaboration (2020). Observation of the Production of Three Massive Gauge Bosons at $\sqrt{ } s$ $=13$ TeV. Phys. Rev. Lett., 125, 151802

