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Motivations
•Collective-like features seen in small systems (pp, p–Pb) at

high charged-particle multiplicity density

•Quarkonium production sensitive to hard component of
particle production, especially for:
– Initial states effects inside the colliding protons/Pb

(Multiple Partonic Interactions, Color Glass Condensate,
Cold Nuclear Matter effects...)

– Final states effects (modifications in a medium or high
string density environment)

•Charged-particle multiplicity sensitive to its soft com-
ponent → correlating quarkonium and multiplicity to
study differences and interplay between hard and soft
components

Quarkonium measurements in ALICE (Run 1 & 2) [1]
• J/ψ→ e+e− at midrapidity (|ylab| < 0.9) in central

barrel (left, [2])
• J/ψ, ψ(2S), Υ(nS) → µ+µ− at forward rapidity

(2.5 < ylab < 4) in muon spectrometer (right, [3])
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•Prompt and non-prompt components ex-
tracted at midrapidity from 2D likelihood fit,
considering mass and pseudo-proper decay
time

J/ψ pair production at forward rapidity in pp at 13 TeV [4]
•Gives insight into Double Parton Scattering, as well as J/ψ production mechanisms
•Results compatible with previous LHCb measurement [5]:

σ(J/ψJ/ψ) = 10.3 ± 2.3 (stat.) ± 1.3 (syst.) nb
1
2
σ(J/ψ)2

σ(J/ψJ/ψ) = 6.2 ± 1.4 (stat.) ± 1.1 (syst.) mb

Multiplicity-dependent quarkonium production in pp and p–Pb

•Forward [10] and midrapidity [11] J/ψ
production as a function of charged-
particle multiplicity in pp collisions:

– Multiplicity (measured at midrapidity) and
quarkonium yields normalized to their average
values

– Forward rapidity: increase close to linear
– Midrapidity: increase stronger than linear

0 1 2 3 4 5 6 7 8

|<1η|
〉η / d

ch
Nd〈

η / dchNd

0

5

10

15

20

〉
y

 /
 d

ψ
J
/

N
d〈

y
 /
 d

ψ
J
/

N
d

ALICE, pp
 < 4y, 2.5 < -µ+µ → ψInclusive J/

 | < 1ηMult. classes: |

 | < 0.9y, |
-

e+ e→ ψInclusive J/

 = 5.02 TeV (INEL > 0)s

 = 7 TeV (INEL)s

 = 13 TeV (INEL > 0)s

 = 13 TeV (INEL > 0, SPD)s

 = 13 TeV (INEL > 0, V0)s

ALI−PUB−530589

•ψ(2S) production as a function of charged-particle multiplicity in pp collisions at 13
TeV and p–Pb collisions at 8.16 TeV [12]:
– Increase close to linear in both pp and p–Pb collisions (left)
– Excited states less bound → more sensitive to final-state effects such as dissociation in medium
–ψ(2S)-to-J/ψ ratio in pp (right) shows no strong evidence for suppression within uncertainties,

but is still compatible with little suppression (as implemented in comover model [13])
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•Υ(nS) (n=1,2,3) production as a
function of charged-particle multi-
plicity in pp collisions at 13 TeV [3]:

– Trends close to linear increase, well repro-
duced by models [14–16]

– Measurement precision does not yet allow
conclusions on additional dissociation for
less bound states
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J/ψ production at midrapidity in p–Pb at 8.16 TeV [2]

•Nuclear modification factor RpA used
to quantify Cold Nuclear Matter
effects (parton shadowing, gluon sat-
uration...):

RpA =
d 2σpA

J/ψ/dydpT

A × d 2σpp
J/ψ/dydpT

•Rapidity-dependent inclusive
J/ψ RpPb:
– RpPb smaller at forward rapidity

(p-going) due to gluon shadowing
inside Pb nuclei ALI-PUB-529535

– All models except energy loss model [6] include nuclear shadowing from different
nuclear Parton Distribution Functions [7, 8]

– Energy loss [6] and transport model [9] include final-state effects
– Trend well described by all models

•Prompt and non-prompt pT-differential J/ψ RpPb:
– RpPb consistent with unity, but with a small drop at low pT for prompt J/ψ, well

described by all models within uncertainties
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Summary
• J/ψ pair production in pp collisions gives insight on Double Parton Scattering → cross-

section measured at forward rapidity compatible with previous LHCb measurements
• p–Pb collisions gives insight into Cold Nuclear Matter effects → J/ψ nuclear

modification factor, consistent with unity, well reproduced by calculations using nPDF
• Self-normalized quarkonium yields at forward rapidity as a function of self-normalized

midrapidity multiplicity show almost linear trends in pp and p–Pb collisions , the increase
is stronger than linear at midrapidity
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