Collective phenomena in large and small systems: status and perspectives from theory

Giuliano Giacalone

Institut für Theoretische Physik (ITP) Universität Heidelberg

August 21, 2023

The physical world as an emergent phenomenon.

Describing interacting many-body systems through their emergent collective properties.

[Anderson, Science 177 no.4047, 393-396 (1972)]

THE HYDRODYNAMIC FRAMEWORK OF HIGH-ENERGY COLLISIONS

Fluctuation of energy density are driven by random nucleon positions.

[Miller, Snellings, nucl-ex/0312008] [Alver, Roland, PRC 81 (2010) 054905]

Effective fluid description: $T^{\mu\nu} = (\epsilon + P)u^{\mu}u^{\nu} - Pg^{\mu\nu}$ [Romatschke & Romatschke, arXiv:1712.05815]

Equation of state from lattice QCD. [HoTQCD collaboration, PRD 90 (2014) 094503] [Gardim, Giacalone, Luzum, Ollitrault, Nature Phys. 16 (2020) 6, 615-619]

Fluid is viscous (η/s , ζ/s , ...). [Bernhard, Moreland, Bass, Nature Phys. 15 (2019) 11, 1113-1117]

LARGE SYSTEMS

(refining the picture)

20 years later: hydrodynamic model constrained via global statistical analyses.

Energy deposition in Bayesian analyses

[Giacalone, arXiv:2208.06839]

2016 "breakthrough": $dS/dy \propto (T_A \ T_B)^{1/2}$ 2018-20: $dE/dy \propto (T_A \ T_B)^{1/2}$

2020 crisis: the QGP has lost all of its structure!

2022-23: restoring "sanity".

New insights about the role of the nucleon size and the total hadronic cross section.

[Giacalone, Schenke, Shen, PRL **128** (2022) 4, 042301] [Nijs, van der Schee, PRL **129** (2022) 23, 232301] [Nijs, van der Schee, arXiv:2304.06191]

 $dE/dy \propto (T_A \ T_B)^{q/2}$ \longrightarrow q=4/3 from LHC data ... AND BACK AGAIN!

Three-dimensional initial conditions and dynamics

- Dynamical 3D Glauber Monte Carlo for multi-purpose studies.

[Shen, Schenke, PRC 105 (2022) 6, 064905]

- Progress in 3+1D Glasma/IP-Glasma simulations.

[McDonald, Jeon, Gale, arXiv:2306.04896] [The McDIPPER model, O. Garcia-Montero, Initial Stages 2023] [Ipp *et al.*, PRD **104** (2021) 11, 114040]

Nuclear structure in the hydrodynamic framework

First attempt, extracting the neutron profile of ²⁰⁸Pb from LHC data.

Consistency between high-energy data and low-energy expectations.

Promising result: more sophisticated features of the nuclei can be included. [see also Cheng *et al.* PRC **107** (2023) 6, 064909] TALK BY YOU ZHOU Thermalization and EOS in ultra-central collisions

[Samanta, Bhatta, Jia, Luzum, Ollitrault, arXiv:2303.15323] [Samanta, Picchetti, Luzum, Ollitrault, arXiv:2306.09294]

TALK BY SOMADUTTA BHATTA

Tansport coefficients

– Bayesian analysis with Viscous Anisotropic Hydrodynamics equations.

$$T^{\mu\nu} = \epsilon u^{\mu}u^{\nu} + P_L z^{\mu}z^{\nu} - P_{\perp}\Xi^{\mu\nu} + 2W^{(\mu}_{\perp z}z^{\nu)} + \pi^{\mu\nu}_{\perp}$$

[Liyanage et al., arXiv:2302.14184]

– First Bayesian analysis with 2D IP-Glasma initial conditions!
 Seemingly excellent constraint on η/s.

[Heffernan *et al.*, arXiv:2302.09478] [Heffernan *et al.*, arXiv:2306.09619]

Hydro with conserved charges

Baryon Density (fm⁻³)

0.031

 Non-equilibrium Green's function for conserved charges in KøMPøST.

[Carzon et al., arXiv:2301.04572]

 Heavy quark diffusion coefficient from QCD kinetic theory.

 $\nabla_{\mu}N^{\mu} = 0$

[Boguslavski et al., arXiv:2303.12520]

 Initialize charm density and solve for respective current (conserved=no thermal charm production).

$$n_{\rm hard}^{Q\overline{Q}}(\tau_0, \vec{x}_{\perp}, y = 0) = \frac{1}{\tau_0} n_{\rm coll}(\vec{x}_{\perp}) \frac{1}{\sigma^{\rm in}} \frac{d\sigma^{Q\bar{Q}}}{dy}$$

[Capellino *et al.*, arXiv:2307.14449] [Capellino *et al.*, PRD **106** (2022) 3, 034021]

 $D^{0} D^{+} D^{*+} D^{+}_{s} J/\psi \Lambda^{+}_{c} \Xi^{+}_{c} \Omega^{0}_{c}$ 10 $0 - 10\%, Pb - Pb \sqrt{s_{NN}} = 5.02 \text{ TeV}$ ALICE w/o resonance decays w/ resonance decays

SMALL SYSTEMS

(understanding the picture)

"Small system question" from a new angle.

[Brandstetter *et al.*, arXiv:2308.09699] [Flörchinger *et al.*, PRC **105** (2022) 4, 044908]

Strongly-interacting ⁶Li atoms in a trap. Imaging the expansion driven by interactions.

No separation of scales in the initial system: system size = interparticle spacing.

TEXTBOOK FLUID DYNAMICS DOES NOT APPLY ...

... but shape inversion is observed!

Real time imaging of the emergence of elliptic flow (momentum space). From data alone it behaves in all respects like a fluid.

New "small system question" outside of the field of high-energy collisions.

NB: Hydro calculation based on corresponding many-body EOS does not work.

Similar situation in small system collisions.

Collective behavior is observed.

 $v_2\{2,4,6,8\}$ $v_3\{2,4\}$ $v_4\{2\}$ $\langle v_2^2 v_3^2 \rangle = \langle v_2^2 v_4^2 \rangle$ $\langle V_2^2 V_4^* \rangle$ $\langle v_2^2 \langle p_t \rangle \rangle \quad \langle v_3^2 \langle p_t \rangle \rangle$

GREAT EXPERIMENTAL PROGRAM

[CMS collaboration, PLB 724 (2013) 213-240]

(b) CMS pPb $\sqrt{s_{NN}} = 5.02 \text{ TeV}, 220 \le N_{trk}^{offline} < 260$

Issue with a hydrodynamic interpretation: collective behavior occurs out of equilibrium!

- Existence and imprints of the hydrodynamic attractor.

[e.g. Soloviev, EPJC 82 (2022) 4, 319]

– Numerical advances for realistic equilibration with transverse expansion.

[Kurkela et al., PLB **811** (2020) 135901] [Kurkela, Mazeliauskas, Törnkvist, JHEP **11** (2021) 216] [Ambrus, Schlichting, Werthmann, PRD **105** (2022) 1, 014031] [Ambrus, Schlichting, Werthmann, PRD **107** (2023) 9, 094013] [Ambrus, Schlichting, Werthmann, PRL **130** (2023) 15, 152301]

EXAMPLE: Boltzmann equation in the relaxation time approximation (RTA):

[Ambrus, Schlichting, Werthmann, PRD 105 (2022) 1, 014031] [Ambrus, Schlichting, Werthmann, PRD 107 (2023) 9, 094013] [Ambrus, Schlichting, Werthmann, PRL 130 (2023) 15, 152301]

Reliable criteria to establish the applicability of hydrodynamics in high-energy collisions.

> **PROSPECTS**: OCD collision kernel.

Exploiting theoretical advances?

Small system collectivity in p-A collisions.

[PHENIX Collaboration, Nature Phys. **15** (2019) 3, 214-220] [STAR collaboration, PRL **130** (2023) 242301]

Full 3D modeling + sub-nucleon structure are essential! Quantitative understanding of data seems out of reach?

Away from the p-A baseline: prospects with light nuclei. Same multiplicities, better controlled geometries.

[Bally et al., in preparation]

Much more robust results by complementing ¹⁶O with an additional light ion.

Natural choice is ²⁰Ne.

$$\frac{v_2 \ [O+O]}{v_2 \ [Ne+Ne]} = 0.93 \pm 0.01$$

Theory uncertainties cancel. Quantitative predictions!

NB: Synergy with LHCb SMOG program.

√s_{NN} = 68.5 GeV

 $0.2 < p_{_{T}} < 3.0 \text{ GeV/c}$

v₂{2}

 $v_{3}\{2\}$

200

150

[LHCb Collaboration, JINST 17 (2022) 05, P05009]

LARGE SYSTEMS

• Refinement of well-established hydrodynamic picture (energy deposition, longitudinal dynamics, nuclear structure, transport coefficients, ...).

SMALL SYSTEMS

- Novel "small system question" with flow of ultracold atoms: Few strongly-interacting particles without a separation of scales display fluid-like behavior.
- Much work and progress in understanding hydro-like behavior out of equilibrium.
- Light nuclei enable more quantitative studies around dN/dy≈100.
 Great potential of ¹⁶O+¹⁶O + LHCb SMOG + ²⁰Ne+²⁰Ne collisions.

