

# **CMS tracker performance in Run3**

Maryam Bayat Makou<sup>1</sup>, Daina Leyva Pernía<sup>1</sup> **1- Deutsches Elektronen Synchrotron (DESY)** 



### The CMS Tracker Largest fully silicon-based detector





Innermost CMS detector, with more than 17000 detector modules in two subsystems: > The pixel detector closest to the interaction point, 1856 modules in 4 cylindrical barrel layers (BPIX) and 3 pairs of endcap discs (FPIX)

## Final countdown to LHC Run 3 **Pixel detector Phase-1 refurbishment**

A series of improvements and repairs carried out to improve the quality of the collected data and to enhance the Pixel detector performance

#### Innermost barrel pixel layer replaced in 2021, featuring:

New modules and improved front-end readout chips

210

220

230

240

Integrated luminosity (fb<sup>-1</sup>)

250

260

- Components with increased HV tolerance up to 800V (450V in Run 2)
- Complete readout chain designed to cope with a particle hit rate up to  $600 MHz/cm^2$

Repairs to individual module's and system-level issues in other layers/disks



> The strip detectors 15148 modules. Four subsystems: Tracker Inner Barrel (TIB), Tracker inner Disk (TID), Tracker Outer Barrel (TOB), Tracker Endcap (TEC)



### **An extreme environment Pixel detector performance**

The pixel detector is the closest to the interaction point. Therefore, it's exposed to high radiation doses and hit rates, particularly affecting the **innermost layer** 



# **Strips stability**



- Regular movements expected from magnet cycles, cooling, irradiation ...
- Automated alignment running online at the Prompt Calibration loop
- CMS Preliminary pp collisions (2023) 13.6 TeV [8]

Summary

The CMS tracker system plays a crucial role in data-taking

Successfully operating



New automated alignment with increased granularity  $\Rightarrow$  improved alignment already during data taking



iteratively during 2023

#### during Run 3 at high pile-up (peak PU ~ 62)

**Continuous efforts carried out to** guarantee optimal performance

We look forward to continue taking high quality data

THIS POST

[1] https://cms.desy.de/activities/detector\_upgrade/phase\_2\_outer\_tracker/ [2] https://cms.cern/detector/identifying-tracks [3] CMS collaboration, CERN-LHCC-2017-009 ; CMS-TDR-014 [4] CMS collaboration, 2022 JINST 17 C09017

[5] CMS collaboration, CMS DP -2023/041 [6] CMS collaboration, <u>CMS DP -2023/040</u> [7] CMS collaboration, <u>CMS DP -2022/070</u> [8] CMS collaboration, <u>CMS DP -2023/039</u>

