

Alignment of the CMS Tracker: Results from LHC Run 3

Sandra Consuegra Rodríguez (DESY) on behalf of the CMS Collaboration

CMS tracker detector Layout Inner **Barrel Pixel (BPIX)** Silicon pixel detector tracking Forward Pixel (FPIX) 1856 modules after system of upgrade in 2017 (ref. to Tracker Inner Barrel (TIB) **CMS** Phase 1) **Tracker Outer Barrel (TOB)** experiment Silicon strip detector **Tracker Inner Disk (TID)** 15 148 modules Tracker Endcap (TEC) **BPIX / FPIX** Organized in barrel and endcaps Phase 1 > Hierarchical structure

Track-based alignment

From installation precision to precision for physics analysis

Goal: determine with a precision down to a few µm the position of all silicon modules of the tracker (× 6 dof)

 $m_{ij} \pm \sigma_{ij}$: measured hit position

p: global alignment parameters

 f_{ii} : predicted hit position

 \mathbf{q}_i : local track parameters [1,2]

Minimisation of sum of squares of normalised track-hit residuals

Automated alignment

- continuous online monitoring of high-level structure movements of pixel detector
- geometry automatically corrected if alignment corrections exceed certain thresholds

Offline Alignment

 track-based alignment run offline for refinement of online calibration, silicon strip detector alignment, and recovering from weak modes making use of increased track kinematic variety

Alignment algorithms

barrels -> half barrels -> layers -> modules

Complementary approaches

> Two independent implementations of track-based alignment used in CMS

MillePede

Silicon pixel

performs global fit including all correlations of global alignment parameters and

local track parameters contains two steps

 integrated alignment software produce dedicated binary files (from track/hit data)

HipPy

- position and orientation of each sensor determined independently
- multiple iterations to solve correlations between sensor parameters
- small matrix inversion on each iteration

 standalone solver Pede

- build linear equation system from binary files
- solve linear equation system

Method	Computing time	7 I	Error calculation
Inversion (Gauss–Jordan) Cholesky decomposition MinRes	$\sim n^3$ number of parameters $\sim n^3$ number of number of internal iterations		Yes Skipped (for speed) No

Performance in Run 3: vertexing

Track-vertex impact parameter =

distance between track and vertex reconstructed without track under scrutiny or ≥

pixel detector

Performance in Run 3

Difference of transverse Distribution of median of track-hit residuals impact parameters Alignment Misaligned Re-aligned beamline ** CERN-TH real track real track **CMS** Preliminary 3.8T cosmic rays (2023) **CMS** Preliminary pp collisions (2023) 13.6 TeV fraction of tracks **FPIX**

 $\Delta d_{xy} / \sqrt{2 [\mu m]}$

Summary

- > Alignment effort on derivation of tracker alignment constants during first two years of LHC Run 3
- 2022

[2]

- early 2023
- > Focus on improving quality of alignment calibration already during initial data reconstruction by optimising automated workflows

Set of validations showing performance of physics observables after alignment

- Tracking performance (Distribution of median residuals)
- Vertexing performance (Track-vertex impact parameter)
- Monitoring of systematic distortions (Muon Track split validation)

show we are on the right path towards this goal

> Excellent Run 3 start in terms of alignment precision as base for ongoing efforts on derivation of refined set of constants for "legacy" reprocessing of 2022 and 2023 datasets

[4] median(x'_{pred} - x'_{hit})[μ m]

[3] The CMS Collaboration, "Tracker alignment performance in 2022 (addendum)", CERN-CMS-DP-2022-070 [4] The CMS Collaboration, "Tracker alignment performance in early 2023", CERN-CMS-DP-2023-039

Delivered integrated luminosity [fb⁻¹]