
Alignment of the CMS Tracker: Results
from LHC Run 3
Sandra Consuegra Rodríguez (DESY) on behalf of the CMS Collaboration

Track-based alignment

Alignment algorithms

CMS tracker detector

Summary

Complementary approaches

Inner
tracking

system of
CMS

experiment

Silicon pixel detector

Tracker Inner Barrel (TIB)
Tracker Outer Barrel (TOB)
Tracker Inner Disk (TID)
Tracker Endcap (TEC)

Barrel Pixel (BPIX)
Forward Pixel (FPIX)

Silicon strip detector

4.0η

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

1.8

2.0
2.2
2.4
2.6
2.8
3.0

z [mm]0 500 1000 1500 2000 2500
0

200

400

600

800

1000

1200

r [
m

m
]

Tracker

Silicon pixel

C
M

S
-T

D
R

-0
19

10
.2

23
23

/1
.3

50
.0

01
0

Phase 1

TOB

TID

TEC

TIB

BPIX / FPIX

> Organized in barrel and endcaps

> Hierarchical structure
barrels -> half barrels -> layers -> modules

Goal: determine with a precision down to a few µm the position of all silicon
modules of the tracker (× 6 dof)

> Minimisation of sum of squares
of normalised track-hit residuals

Tracker Alignment

Track based alignment

The track-to-hit residual is defined as:

Rξ(p, q) = mξ,hit − fξ,tk(p, q)

difference between measured position mij

and position extrapolated from fit fij(p, qj)
depending on p = alignment parameters
(module position / orientation) and qj

track parameters.
Define a Global Objective function to be minimized Ω(p, q):

Ω(p, q) =
tracksX

j

hitsX

i

= RT
ij (p, qj)V

−1
ij Rij(p, qj)

in which:

Vij = covariance matrix from track fit;

Rij(p, qj) = track-to-hit residual.

Alignment algorithms attempt to minimize this objective function and therefore track

residuals.
Marco Musich (Università Torino) Torino, 21st Feb 2011 12/49

: measured hit position
: predicted hit position

p: global alignment parameters
: local track parameters [1,2]

𝑚𝑖𝑗 ± 𝜎𝑖𝑗
𝑓𝑖𝑗

𝐪𝑗

 - 𝑟𝑖𝑗(𝐩, 𝐪𝑗) = 𝑚𝑖𝑗 𝑓𝑖𝑗(𝐩, 𝐪𝑗)
𝜒2(𝐩, 𝐪) =

tracks

∑
𝑗

 measurements

∑
𝑖

𝑚𝑖𝑗 − 𝑓𝑖𝑗(𝐩, 𝐪𝑗)

𝜎𝑖𝑗

2

> Two independent implementations of track-based alignment used in CMS

• performs global fit including
all correlations of global
alignment parameters and
local track parameters

• contains two steps

HipPyMillePede
• position and orientation of each sensor

determined independently
• multiple iterations to solve correlations

between sensor parameters
• small matrix inversion on each iteration

• i n t e g r a t e d i n
alignment software

• produce dedicated
binary files (from
track/hit data)

Mille Pede
• standalone solver
• build linear equation system

from binary files
• solve linear equation system

 [rad]φtrack

30−

20−

10−

0

10

20

30m
]

µ [〉
xy

 d〈
3− 2− 1− 0 1 2 3

Alignment with:
3.8T cosmic rays
3.8T cosmic rays + 900 GeV collisions
3.8T cosmic rays + 13.6 TeV collisions

pp collisions (2023) 13.6 TeVCMS Preliminary
Performance in Run 3: vertexing

Track-vertex impact parameter
> distance between track and vertex
reconstructed without track under scrutiny
> evaluate performance of alignment in
pixel detector

2022

2023

10− 8− 6− 4− 2− 0 2 4 6 8 10
m]µ)[hit-x'

pred
median(x'

0

50

100

150

200

250

300m
µ

nu
m

be
r o

f m
od

ul
es

 /
0.

4

Preliminary CMS pp collisions (2023) 13.6 TeV

FPIX

Alignment with
3.8T cosmic rays mµm, rms = 2.0 µ = -0.7 µ
3.8T cosmic rays + 900 GeV collisions mµm, rms = 1.1 µ = 0.2 µ
3.8T cosmic rays + 13.6 TeV collisions mµm, rms = 0.5 µ = 0.0 µ

Distribution of median
of track-hit residuals

From installation precision to precision for physics analysis

Automated alignment

• continuous online monitoring of
high-level structure movements
of pixel detector

• geometry automatically corrected
if alignment corrections exceed
certain thresholds

Offline Alignment

• track-based alignment run offline
f o r r e f i n e m e n t o f o n l i n e
calibration, silicon strip detector
alignment, and recovering from
weak modes making use of
increased track kinematic variety

Page 17

Track split validation: impact parameters

| Tracker Alignment in CMS | Sandra Consuegra Rodríguez (DESY) |

k

C
ER

N
-T

H
ES

IS
-2

01
1-

43
5

> Create two individual track candidates from each cosmic track by splitting the cosmic tracks
at their point of closest approach to the interaction region

> Compare the track parameters of the two track candidates
(e.g., difference of transverse and longitudinal impact parameters)

> Method sensitive to off-centering of barrel layers and endcap rings
(weak mode: sagitta misalignment)

Page 17

Track split validation: impact parameters

| Tracker Alignment in CMS | Sandra Consuegra Rodríguez (DESY) |

k

C
ER

N
-T

H
ES

IS
-2

01
1-

43
5

> Create two individual track candidates from each cosmic track by splitting the cosmic tracks
at their point of closest approach to the interaction region

> Compare the track parameters of the two track candidates
(e.g., difference of transverse and longitudinal impact parameters)

> Method sensitive to off-centering of barrel layers and endcap rings
(weak mode: sagitta misalignment)

Difference of transverse
impact parameters

Results with Cosmics Rays Measurement of Alignment precision

Estimation of residual misalignment

Residual widths dominated by stochastic effects, like multiple Coulomb scattering or the
intrinsic resolution of the hits:

σR = σhit|{z}
intrinsic

⊕ σMS|{z}
Multiple Scattering

⊕ σmis|{z}
misalignment

Goal: disentangle random effects from systematic ones produced by remaining
misalignment
at zeroth order the alignment recovers the true position of modules along the
measurement coordinate ⇒ check that the residuals are “centered” after the alignment

Marco Musich (Università Torino) Torino, 21st Feb 2011 18/49

Layout

C
E

R
N

-T
H

E
S

IS
-2

01
1-

43
5

C
E

R
N

-T
H

E
S

IS
-2

01
1-

43
5

C
E

R
N

-T
H

E
S

IS
-2

01
1-

43
5

Performance in Run 3
> Alignment effort on derivation of tracker alignment constants during
first two years of LHC Run 3

• 2022

• early 2023

> Focus on improving quality of alignment calibration already during
initial data reconstruction by optimising automated workflows

Set of validations showing performance of physics observables after
alignment

 - Tracking performance (Distribution of median residuals)

 - Vertexing performance (Track-vertex impact parameter)

 - Monitoring of systematic distortions (Muon Track split validation)
show we are on the right path towards this goal

> Excellent Run 3 start in terms of alignment precision as base for
ongoing efforts on derivation of refined set of constants for “legacy”
reprocessing of 2022 and 2023 datasets

References:
[1] CMS Collaboration "Strategies and performance of the CMS silicon tracker alignment during LHC Run 2", doi:10.1016/j.nima.2022.166795
[2] CMS Collaboration "Alignment of the CMS tracker with LHC and cosmic ray data", doi:10.1088/1748-0221/9/06/P06009
[3] The CMS Collaboration, “Tracker alignment performance in 2022 (addendum)”, CERN-CMS-DP-2022-070
[4] The CMS Collaboration, “Tracker alignment performance in early 2023”, CERN-CMS-DP-2023-039

[4] [4]

[4]

[3]

The CMS Collaboration Nuclear Inst. and Methods in Physics Research, A 1037 (2022) 166795

events are simulated with ✏ = 5 ù 10*4, 2.5 ù 10*4, 0, *2.5 ù 10*4, and
*5 ù 10*4.

As the above studies show, various systematic distortions in the
tracker geometry can be detected using combinations of different types
of tracks and hits. Therefore, it is essential to combine all this in-
formation in the alignment procedure, which will be discussed in
the next section. Balanced information in the input to the alignment
procedure would ensure that such distortions are not present in the
tracker geometry prepared for the reconstruction of tracks.

6. Alignment algorithms

The CMS Collaboration uses two independent implementations of
the track-based alignment, millepede-II and HipPy. In the mathemat-
ical formulation presented in Section 3, millepede-II also performs a
global matrix inversion, whereas HipPy neglects the blocks relating the
alignment parameters to the track parameters and iterates to improve
this approximation. Furthermore, the two algorithms follow different
strategies. They are developed, maintained, and used independently;
thus facilitating independent cross-checks. The earlier implementations
of both algorithms, including techniques such as vertex and mass
constraints, were described in Refs. [1,2,18]. The algorithm that was
used will be addressed in the following sections when investigating
practical cases. In this section, we outline the improvements in the two
algorithms motivated by the needs of the alignment procedure of the
CMS tracker during Run 2.

6.1. Millepede-II

The millepede-II algorithm [10,19,20] has been discussed in the
context of CMS in Ref. [2].

It is still being developed further to meet the growing user needs;
in addition to CMS, the Belle-II experiment [21] is a main user driving
the developments. In this section, we review the main algorithms
implemented in the software and describe recent improvements. The
millepede-II algorithm allows determination of the position, the orienta-
tion, and the curvature of the tracker modules. The algorithm consists
of two steps:

Mille This programme has to be integrated into the track fitting soft-
ware of the specific experiment. For each track the independent
residuals with errors and the derivatives of the track (local) and
module (global) parameters from Eq. (2) have to be calculated
and stored in custom binary files. The track fitting method has
to fit all hits simultaneously, providing the complete covariance
matrix of all track parameters. Although a solution based on the
standard Kalman filter [22] is also possible [23,24], only the
general broken lines method [25,26] has been implemented for
the track fit in millepede-II. This is a refit of the trajectory defined
by the track parameters from the Kalman filter at one given hit,
e.g. the first. The output to binary mille files contains the subset
of the trajectory attributes that are needed by millepede-II. Only
the global derivatives have to be added.

Pede This is an experiment-independent Fortran program that builds
and solves the linear equation system from Eq. (4). It reads a
text file with steering information and the tracks with the hit in-
formation from the mille binary files to perform the local (track)
fits to construct the global matrix C®. This symmetric matrix is
stored in full (lower triangular part) or sparse (only nonzero
parts) mode. Several solution methods are implemented. An
overview is given in Table 2.

Compared with the version used previously by CMS [2], the most
important technical improvements used for the alignment fits described
in this paper are:

Table 2
List of the main solution methods implemented in MILLEPEDE-II. The computation
time is given as a function of the number of parameters n and the number of internal
iterations nit if applicable. The type of solution delivered by the algorithm is also shown.

Method Computing time Solution type Error calculation

Inversion (Gauss–Jordan) Ìn3 Exact Yes
Cholesky decomposition Ìn3 Exact Skipped (for speed)
MinRes [27,28] Ìn2 ù nit Approximate No

Table 3
Examples of Pede wall time (time taken from start of the programme to end) for some
larger alignment campaigns using MinRes on a dedicated test machine (Intel Xeon
E5-2667 @ 3.2GHz, 256GB memory @ 51GB/s).
Number of Number of Number of Matrix size [GB] Wall time [s]
global parameters constraints records (sparse) (10 threads)

217 500 138 4.46 ù 107 44 8.4 ù 103
213900 1782 2.90 ù 107 85 6.8 ù 103
576000 942 5.20 ù 107 218 4.4 ù 104

1. The migration from Fortran 77 to Fortran 90 allowing for dy-
namic memory management.

2. The implementation of the solution of problems with constraints
by elimination, in addition to Lagrange multipliers. Especially
for large problems where an approximate solution is obtained
[27], elimination shows superior numerical performance.

3. The analysis of the input (global parameters and constraints) for
optional factorization of a large problem into smaller ones using
block matrix algebra.

4. Alignable objects are, in general, described by several global
parameters. These global parameters appear together in the
binary files, and are now split into groups by relying on the
adjacent global (user-defined) labels with which the parameters
appear. This means the global matrix is organized as a collection
of block matrices instead of a collection of single values. The
size corresponds to the two contributing parameter groups. By
arranging the matrix in this way, operations on the global matrix
are sped up using the caching and vectorization options available
on modern processors. This helps especially in the case of sparse
storage, since typically 10%–30% of the elements of the global
matrix are nonzero.

In Table 3, we illustrate the amount of running time used by Pede
to solve the linear equation system from Eq. (4); a record typically
corresponds to a track or to a pair of tracks coming from a resonance
decay. These results were obtained with a test machine at DESY; in
practice, for the alignment fits presented in this paper, similar machines
at CERN were used.

No numerical problems have been observed. Either rank deficits are
detected, or the matrix is inverted correctly.

6.2. Hippy

The HipPy algorithm is based on the hits-and-impact-points algo-
rithm [29,30] with additional features introduced using the constraints
developed for the BaBar track-based alignment [31]. It has been used
extensively during commissioning of the CMS tracker [18] and during
the CMS start-up period in Run 1 [1,2]. Further improvements were
introduced during Run 2, as described below. The improved algorithm
is now named hits-and-impact-points-past-year-1 (HipPy).

The main distinguishing feature of the HipPy algorithm, compared
with millepede-II, is its local nature. The position and orientation of
each sensor are determined independently of the other sensors. This
approach has advantages and disadvantages compared to millepede-II.
One disadvantage is that multiple iterations of running the algorithm
are required to solve correlations between the sensor parameters. The
number of iterations can be several dozen up to a hundred. This means

10

[2]

number of
parameters
number of
internal
iterations

Increased granularity on automated alignment deployed for data-taking for the first time!

1 8 5 6 m o d u l e s a f t e r
upgrade in 2017 (ref. to
Phase 1)

15 148 modules

https://inspirehep.net/literature/1614103
https://inspirehep.net/literature/1756719
https://cds.cern.ch/record/2636097
https://cds.cern.ch/record/2636097
https://cds.cern.ch/record/2636097
https://doi.org/10.1016/j.nima.2022.166795
https://doi.org/10.1088/1748-0221/9/06/P06009
https://cds.cern.ch/record/2845618
https://cds.cern.ch/record/2865840

