FastSim Parametrization of Beam Dump

Oleksandr Borysov, Arka Santra, Noam Tal Hod June 13, 2022 Weizmann Institute of Science, Rehovot, Israel

Parametrization of beam dump: Why do we need this?

- Need many BXs of samples to characterize the detector performances
 - Otherwise the results are statistically limited.
- Geant4 simulation using LUXE geometry
 - Simulation inside the beam-dump is computationally expensive
 - Limits the number of BXs we can generate.
 - Have 2 BX of e+laser background only sample.
 - For CDR, we had ~300BX of background only sample.
- Way out:

 - This may be faster by 100x.
 - Can overcome the computation challenge.

• Not properly simulate the dump in Geant4, but try to parametrize the response of the dump.

Different particles generated from dump:

Y-axis is ratio of particle coming from dump over all the sources to the tracker last layer.

★At the tracker last layer
★100% of the neutron come from dump
>10% of the photons come from dump
★~1% of the electrons and positrons from the dump

3

- Disable the dump and replace all its "output" $oldsymbol{O}$ by source-like particles
- Look at the dummy volume located just at $oldsymbol{O}$ the surface of the dump
 - Arka will plot $\frac{dN}{dE}, \frac{d^2N}{drd\theta_p}$
 - r is just $\sqrt{x^2 + y^2}$ and θ_p , ϕ_p is the

polar angle and azimuthal angle of momentum-> representative of direction of the particle.

Later: generate from the dump surface $oldsymbol{O}$ according to these plots

June 12 2022

Simulation for dump only geometry:

- Sasha produced 10BX of dump only simulation
- Electron beam of 16.5 GeV directly hitting the dump
- Dump is made of Aluminum and Copper
 - The origin is at the center of the dump.
 - The face of the dump is at z = -250mm
- The surface which records particles is at z=-350mm, 100 mm away from dump face.

Some distributions: neutron X and Y position of tracks

track y [mm]

dump_plane_bkg_track_r_neutron_cut

Some distributions: neutron **Time and energy**

dump_plane_bkg_track_time_neutron

Restrict ourselves to 1 μs as detector timing resolution is ~1 μs .

dump_plane_bkg_track_energy_neutron_cut

7

Some distributions: neutron

Momentum direction

towards IP

dump_plane_bkg_track_theta_neutron_weighted_cut

Correlation plots: neutron

dump_plane_bkg_track_r_track_E_neutron_weighted_cut

 $\star \theta_p$ and r are correlated.

 \star E and r, E and θ_p are not correlated.

 \star To parametrize the neutrons from dump, we can utilize

- \bigstar Correlation of θ_p and r
- ★1D distribution of E

 \star Will use uniform timing distribution upto 1us.

Some distributions: photon X and Y position of tracks

track y [mm]

dump_plane_bkg_track_r_photon_cut

 $r = \sqrt{x^2 + y^2}$

Some distributions: photon Time and energy

dump_plane_bkg_track_time_photon

Restrict ourselves to 1 μs as detector timing resolution is ~1 μ s.

dump_plane_bkg_track_energy_photon_cut

Some distributions: photon **Momentum direction**

dump_plane_bkg_track_theta_photon_weighted_cut

Restrict ourselves to particles having $p_Z < 0$, i.e. coming out of the dump towards IP

dump_plane_bkg_track_phi_photon_cut

Uniform in azimuthal angle

Correlation plots: photon

dump_plane_bkg_track_r_track_E_photon_weighted_cut

dump_plane_bkg_track_theta_track_E_photon_weighted_cut

 $\star \theta_p$ and r are correlated.

 \star E and r, E and θ_p are not correlated.

 \star To parametrize the neutrons from dump, we can utilize

- **★**Correlation of θ_p and r
- \star 1D distribution of E

 \star Will use uniform timing distribution upto 1us.

Summary

- It is possible to parametrize the response of the dump
 - Will replace the dump with "particle gun" generating neutrons and photons
 - Generate r (find θ_p using correlation) and E given the distribution.
 - Validation of this by comparing result with FullSim sample with dump.
- Will provide the E, pdgId, p_x , p_y , p_z , r distributions to Sasha to implement dump parametrization in Geant4 simulation.
 - Need to carefully translate to LUXE coordinate system.

Correlation between ϕ_p and ϕ_{pos}

dump_plane_bkg_track_phi_pos_phi_neutron_cut

dump_plane_bkg_track_phi_pos_phi_photon_cut

Correlation between θ_p and θ_{pos}

17

