Arka Santra, Noam Tal Hod June 13, 2022 Weizmann Institute of Science, **Rehovot, Israel**

g-laser: Track Reconstruction

g+laser: Sig, Sig+Bkg and Bkg only sample

- Signal sample:
 - 10BX of signal sample with truth signal multiplicity ~ 70
- We have 1.26 bx of g+laser background only samples.
 - Added 1 BX of Bkg to all 10 BXs of signal to prepare 10BX of Sig+Bkg sample.
- Digitized the hits using Allpix-squared software setup.
 - Output is the location of fired pixels pixels gathering more than 120e of charge.
 - Fired pixels were clustered using Packman algorithm.
 - Same set of configurations as we used for the e+laser samples for the tracker TDR.

Noam Tal Hod, WIS

Jun 19 2022

Occupancy plots in g+laser: number of particles per pixel per BX (P-side)

Cutflow

- - Meaning less than 4 hits per track.

Results: P-side

Energy reconstruction

6

Summary

- Far less bkg compared to the e+laser this is manifested in the cutflow.
- The quality cuts is not fully optimized
 - cuts.
- The distributions are very similar between s-only and s+b and truth.
 - tracks.
 - Need more statistics here.
- the large g-beam).
- Performance of the E-side is similar.

• The signal tracks lost in the last part of the cutflow can be recovered after proper optimization of the

• This means that the presence of the bkg may alter the track fit by a bit, but it does not generate fake

In the first approximation we do not need the upstream collimator as of now (despite the concerns from

Clusters

All clusters in L10 per BX

9