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Data modali>es
• Tabular: no par>cular rela>on between features of a sample 

• x = [feat1, feat2, ...] 

• Image: features naturally embed into a 2D/3D Cartesian grid 

• x = Matrix(320,320,3) 

• Set: each sample consists data points with features, no par>cular 
order 

• x = {p1, p2, p3, ...}, pn = [feat1, feat2, ...] 

• Set embaddable in 2D/3D: some features can be easily 
interpreted as x, y, z in a space
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Data modali>es

• Sequence: data points in a sample are naturally ordered (e.g in >me) 

• x = [p1, p2, p3, ...], pn =[feat1, feat2, ...] 

• Heterogeneous set: data points in a sample have different features 

• x = {p1, p2, k1, ...}, pn = [feat1, feat2], kn = [feat3, feat4, feat5] 

• Graph: data points in a sample have meaningful, quan>fiable, 
observable rela>ons 

• x = {p1, p2, p3, ...}, A = {A12, A13, A23, ...}
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Jet tagging with a simple 
neural network

Opera4ons on a 
graph

Graph Convolu4onal 
Networks

Graph A:en4on 
Networks

Message Passing 
Networks

Graph Structure 
Learning

Dynamic Graphs: 
Par4cleNet

Sparse graph models: GravNet and 
detector clustering

Scalable graph models: 
par4cle flow

very large graphs 
(>100000 nodes)

graph sampling

transduc4ve learning

produc4on use

genera4ve models

normaliza4on, 
regulariza4on

Interac4on 
Networks

heterogeneous graphs



Jet tagging

Moreno, E.A., Cerri, O., Duarte, J.M. et al. JEDI-net: a jet identification algorithm based on interaction networks. Eur. 
Phys. J. C 80, 58 (2020). https://doi.org/10.1140/epjc/s10052-020-7608-4

jet constituents: set of particles  
{..., (pT, η, ɸ, particle ID), ...}

target:  
jet originator particle ID
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Image credit: CMS

"signal""background"

https://cms.cern/news/jets-cms-and-determination-their-energy-scale
https://cms.cern/news/jets-cms-and-determination-their-energy-scale


Data representa>on
set of inputs with N cons4tuents, M features 

{..., (pT, η, ɸ, par>cle ID), ...}
feature matrix (N, M) 

pT (GeV) η ɸ par>cle ID
12.3 1.2 0.5 pi+
11.8 1.24 0.45 K0
10.4 1.18 0.43 pi-
9.8 1.39 ... e-
6.4 ... ... ...
5.3 ... ...

Set of feature vectors + ordering → feature matrix

jet cons>tuents
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Simple neural network
feature matrix (N, M)

pT (GeV) η ɸ par4cle ID

12.3 1.2 0.5 pi+

11.8 1.24 0.45 K0

10.4 1.18 0.43 pi-

9.8 1.39 ... e-

6.4 ... ... ...

5.3 ... ...

flat NxM feature vector
par>cle 1, pT

par>cle 2, pT

par>cle 3, pT

par>cle 1, η

par>cle 2, η

...

...

map feature vector to 
an output

hgps://github.com/ledell/sldm4-h2o 

Order: The ordering is important! A feedforward network trained with e.g. pT-descending 
ordering would not necessarily work with pT-ascending. Which ordering is op>mal? 

Representa4on: What if for each jet you want to classify, the number of cons>tuents N varies? 
Need to make all feature matrices the same size (e.g. with 0 padding). 

Structure: All-to-all connec>vity. Every cons>tuent in the input layer can affect every other 
cons>tuent in the next layer.

8

p ∈ [0,1]

https://github.com/ledell/sldm4-h2o
https://github.com/ledell/sldm4-h2o


Graph structure

1

2
3

4

5

6

graph = set of nodes/ver4ces/elements + 
edges between them Or as an NxN adjacency matrix

Where do we get this graph structure? 
1. All-to-all connec>ons, in case of small input sets. 

2. From physics priors: connect "nearby" elements in advance 
3. Op>mize as a part of the learning process (Graph Structure Learning)

Edges represented as a index pairs 
edges = [(1,4), (1,3), (2,5), (6,5)]
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Sparse tensors
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• Not always possible to store NxN adjacency matrix (e.g. if N > few 
thousands) 

• Sparse graph adjacency matrices are typically represented in COO sparse 
format in DL libraries 

• Backprop only on nonzero data values, not on row/column indices
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Ragged/jagged tensor

• Memory-efficient way to represent sequences of different length in 
a single batch 

• Used to avoid zero-padding & masking when doing batch processing 

• GPUs generally like inputs to be of the same length: memory / 
run>me tradeoff



Example graph structures
Par4cle tracking (neighborhood)

Mul4layer calorimeter hits (neighborhood)

Jet cons4tuents (all-to-all)

event cons4tuents (all-to-all)

Graph Neural Networks in Par>cle Physics, Jonathan Shlomi, Peter Bagaglia, Jean-Roch Vlimant, 2007.13681, 10.1088/2632-2153/abbf9a
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π±



Graph problems
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J. Leskovec et al [2021] 

Par>cle Flow reconstruc>on, 
detector hit segmenta>on

Track reconstruc>on

Jet tagging, 
event tagging

detector hit clustering

http://web.stanford.edu/class/cs224w/slides/01-intro.pdf
http://web.stanford.edu/class/cs224w/slides/01-intro.pdf


Opera>ons on a graph

node features updated nodes nodes aggregated 
node

elementwise update permuta4on-invariant 
aggrega4on

1

2
3

4

5

6

node features

node features

Graph Neural Networks in Par>cle Physics, Jonathan Shlomi, Peter Bagaglia, 
Jean-Roch Vlimant, 2007.13681, 10.1088/2632-2153/abbf9a

node features
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X'5: 1 x dout

Graph Convolu>onal 
Network (GCN)

1

2
3

4

5

6

1

2
3

4

5

6

X5: 1 x din

trainable weight matrix W: din x dout 

update rule: X'i→ReLU[Aji · (Xj · W)] 

e.g. X'5 = ReLU[A65 (X6 · W) + A25 (X2 · W)]

input nodes output nodes

X6: 1 x din

X2: 1 x din
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A25

A65



Computa>onal modes

Disjoint 
features: (N1 + N2 + ...) x D 
adjacency: (N1 + N2 + ...)2

Suppose we have a dataset of jets we want to classify, each jet having Ni cons>tuents. 
NN training ozen requires batching the data to average gradient updates.

jet 1, N1

jet 2, N2

jet 3, N3

Batched 
features: B x N x D 

adjacencies: B x N x N

Adjacency is typically sparse. 
Suitable for large inputs (N > 1000). 

Typically requires on-the-fly computa>on (e.g. pytorch).

Adjacency is typically dense. 
Graphs may be zero-padded / masked to size N. 

Suitable for small inputs (<1000) and sta>c 
computa>onal graphs (e.g. tensorflow).

jet 1, N1jet 2, N2
jet 3, N3

hgps://graphneural.network/data-modes/ 
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https://graphneural.network/data-modes/
https://graphneural.network/data-modes/


GCN proper>es

• A trainable weight matrix Wi (din x dout) in layer i shared across all nodes 

• The input and output is a graph. The node features are transformed, the graph structure does not change.  

• The GCN is permuta>on-invariant: it does not mager in which order the set of nodes is formaged as a matrix 
for computa>ons, due to the permuta>on-invariant aggrega>on funcion 

• A very nice overview can be found from Kipf & Welling: hgps://tkipf.github.io/graph-convolu>onal-networks/  
17

N x din N x dout

W1 W2

1 x dout

∑

graph 
classification

https://tkipf.github.io/graph-convolutional-networks/
https://tkipf.github.io/graph-convolutional-networks/


Node smoothing
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Deep GCN without skip connections → oversmoothing, performance drops

Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." arXiv preprint arXiv:1609.02907 (2016).



Message passing
• Different types of graph-related algorithms can be formulated in the 

message passing language 

• Nodes pass messages to their neighbors 

• Aggregate the messages and update the node state

message

learnable 
message 
func>on

learnable update 
func>on

edge features

node features

Gilmer, Jus>n, et al. "Neural message passing for quantum chemistry." InternaNonal Conference on Machine Learning. PMLR, 2017.

hvt

hwt hw't

hw''t

evw evw'

evw''
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GCN as message passing

Incoming message on a node

Message func4on

Node update rule

Node update func4on

Gilmer, Justin, et al. "Neural message passing for quantum chemistry." International Conference on Machine Learning. PMLR, 2017.
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Graph Agen>on (GAT)
Compute an agen>on coefficient 𝛼ij between pairs of 

connected nodes. 
Trainable agen>on vector a, feature weight vector W.

Update the node feature vector based on 
nearby agen>on coefficients.

h1

h2 h3

h4

𝛼12 𝛼13

𝛼14

Inputs are graphs: N x din 
Outputs are graphs: N x dout 

Agen>on vector a can be interpreted as feature-to-feature associa>on.
Veličković, Petar, et al. "Graph agen>on networks." arXiv preprint arXiv:1710.10903 (2017).
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Mul>-head GAT

concatenate: K ⨉ out_features

Instead of a single agen>on coefficient 𝛼ij per a node pair, compute K independent values 𝛼ijk. 

average: out_features

here: each colored line is one of 
K=3 agen>on heads.

Veličković, Petar, et al. "Graph agen>on networks." arXiv preprint arXiv:1710.10903 (2017).
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Interac>on network (IN)

Bagaglia, Peter W., et al. "Interac>on networks for learning about objects, rela>ons and physics." arXiv preprint arXiv:1612.00222 (2016).

In the Interac>on Network (2016), the message func>on Mt and the node update func>on Ut are given 
as generic neural networks opera>ng on concatenated node and edge inputs.

interac>on 
terms effects

externals xi

objects oi, 
rela>ons ri

object model fO
aggrega>on

updated 
objects pi 
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IN for jet tagging

Moreno, E.A., Cerri, O., Duarte, J.M. et al. JEDI-net: a jet iden>fica>on algorithm based on interac>on 
networks. Eur. Phys. J. C 80, 58 (2020). hgps://doi.org/10.1140/epjc/s10052-020-7608-4

jet cons4tuent 
input

per-jet output

[src, dst] features (edges)

processed 
edges

summed edges 
to ver4ces

cons4tuents

24



IN for par>cle tracking

Figure from Shlomi et al

DeZoort, Gage, et al. "Charged particle tracking via edge-classifying interaction networks." arXiv preprint arXiv:2103.16701 (2021).

DeZoort et al

Fully connected: 1000 nodes -> 
500k edges, not feasible!  

Set up an ini>al sparse hit graph 
based on node proximity.

Classify possible edges as true/false 
based on actual track informa>on, 
predict edge weight 

X: node features (nodes ⨉ 3) 
Ra: edge features  (edges ⨉ 4) 
Ri, Ro: incoming/outgoing edge matrix 
Ri,oX: incoming/outgoing nodes (edges x 3) 
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Dynamic graph with kNN
• In the previous examples with GCN, GAT and IN, the graph was sta>c and defined/known in 

advance 

• Ozen, the graph structure may not be known in advance, or may be inaccurate 

• Construct dynamically: point cloud {xi} → for each point xi, find k closest neighbors {xj}, edges 
{eij}

S. Sieranoja

xi xj eij

query point
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http://cs.uef.fi/pages/franti/cluster/knng_lecture_6G.pdf
http://cs.uef.fi/pages/franti/cluster/knng_lecture_6G.pdf


Dynamic graph CNN 
(DGCNN)

construct an edge feature 
using a learnable func>on

Compute the new point features xi' using 
an aggrega>on over the edges

Wang, Yue, et al. "Dynamic graph CNN for learning on point clouds." Acm TransacNons On Graphics (tog) 38.5 (2019): 1-12.

Construct neighbor graph: for each point xi, find k 
closest neighbors {xj}, edges {eij}
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Par>cleNet: EdgeConv block

number of 
linear units C1

C2

C3

Qu, Huilin, and Loukas Gouskos. "Jet tagging via particle clouds." Physical Review D 101.5 (2020): 056019.

input coordinates (B, N, C) input features: (B, N, F)

distance matrix: (B, N, N)

edge features: (B, N, K, 2*F)

edge convolu>ons

output features: (B, N, O)
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Par>cleNet full model

Qu, Huilin, and Loukas Gouskos. "Jet tagging via particle clouds." Physical Review D 101.5 (2020): 056019.

• Up to 100 highest-pT cons>tuents of each 
jet 

• rela>ve η, ϕ coordinates wrt. the jet axis 
as coordinates 

• Features are derived from 4-momentum 
(log transforms, ra>os) 

• Coordinates in subsequent layers are 
derived from previous layer outputs
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GravNet/GarNet
• Full, dense NxN distance matrix can be too large to store for N>few hundred, kNN can be expensive in a high-

dimensional input space 

• In case low latency, low memory consump>on is desirable, op>mize by using a sparse adjacency matrix, separa>ng 
spa>al components and feature components

GravNet: full kNN graph on 
all nodes GarNet: choose a fixed number 

of aggregators

aggregate

transform nodes with edge 
info +  poten4al

compute node output

Qasim, Shah Rukh, et al. "Learning representa>ons of irregular par>cle-detector geometry with distance-weighted graph networks." The European 
Physical Journal C 79.7 (2019): 1-11.
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Detector reconstruc>on

Qasim, Shah Rukh, et al. "Learning representa>ons of irregular par>cle-detector geometry with 
distance-weighted graph networks." The European Physical Journal C 79.7 (2019): 1-11.

π±• kNN + sparse graph adjacency matrix: 
GravNet 

• Cluster energy deposits from 
overlapping showers in a highly 
granular, layered tungsten detector 
simula>on 

• Predict the energy frac>on of each 
sensor (I) belonging to each shower 
(K): pik vs tik

Two overlapping showers generated

reconstructed
31



Par>cle Flow reconstruc>on
hard interac>on visible final state par>cles visible detector hits

The Par>cle Flow algorithm combines elements across different detectors to a global 
par>cle-level representa>on of the collision.
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Par>cle flow inputs and outputs in a single event
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Pata, J., Duarte, J., Vlimant, JR. et al. MLPF: efficient machine-learned particle-flow reconstruction 
using graph neural networks. Eur. Phys. J. C 81, 381 (2021)



GNNs for Par>cle Flow
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Performance in simula>on

35

Runtime (and memory) scale linearly with event size.

Predicts particle multiplicitly better than the baseline rule-based PF



Performance in CMS
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https://arxiv.org/pdf/2203.00330.pdf



Recap
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Graph problems

38

J. Leskovec et al [2021] 

Par>cle Flow reconstruc>on, 
detector hit segmenta>on

Track reconstruc>on

Jet tagging, 
event tagging

detector hit clustering

http://web.stanford.edu/class/cs224w/slides/01-intro.pdf
http://web.stanford.edu/class/cs224w/slides/01-intro.pdf


Graph opera>ons
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elementwise update aggrega4on

Invariance with respect to permuta>ons!



Graph structure
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Defined by the process 
(but not necessarily observable) Assumed (sta>c) Learned (dynamic)



Advantages/disadvantages

+ Encode physics priors in the graph 
structure 

+ Insensi>ve to the ordering of inputs 

+ Sparse and irregular problem 
geometries 

+ Efficient computa>on and memory 
representa>on

41

- Support for sparse data structures 
on GPUs and in DL libraries is not 
always great (but it's growing) 

- It's not always obvious how to best 
cast the physics problem as a graph 
problem, i.e. what defines the graph 

- Graph structure may be 
mismeasured or not known 
accurately 

- Deeper nets ozen do not perform 
beger



Useful references

• HEPML Living Review: hgps://iml-wg.github.io/HEPML-
LivingReview/ 

• ML on Graphs @ Stanford: hgp://web.stanford.edu/class/
cs224w/  

• Graph Representa>on Learning book (WIP): hgps://
www.cs.mcgill.ca/~wlh/grl_book/  

• Graph Neural Networks in Par>cle Physics: hgps://arxiv.org/
pdf/2203.12852.pdf 
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https://iml-wg.github.io/HEPML-LivingReview/
http://web.stanford.edu/class/cs224w/
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Prac>cal exercise
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Jupyter notebook: github, colab

https://github.com/jpata/gnn-hep-lecture/blob/main/intro-to-gnns.ipynb
https://colab.research.google.com/github/jpata/gnn-hep-lecture/blob/main/intro-to-gnns.ipynb
https://github.com/jpata/gnn-hep-lecture/blob/main/intro-to-gnns.ipynb
https://colab.research.google.com/github/jpata/gnn-hep-lecture/blob/main/intro-to-gnns.ipynb


GNNs to Transformers
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The GNN updates (encodes) each node, given information from nearby 
nodes, in a learnable way, to minimize an overall objective function.



GNNs need structure

45

explicit / predefined

implicit / learnable



Self-agen>on
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https://arxiv.org/pdf/2108.04253.pdf

https://jalammar.github.io/illustrated-transformer/

Project each element from input space X to Q,K,V with learnable weights.

Nelem x Nfeat

Nelem x NQ

Nelem x NK

Nelem x NV

particle 1 
particle 2

particle 1 
particle 2

particle 1 
particle 2



Self-agen>on outputs
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Nelem x Nelem attention matrix

Nelem x NV values

Nelem x NV outputs

particle 1 
particle 2

• Compute the matrix product of per-element queries with per-element keys 

• Retrieve the corresponding values according to sozmax-normalized agen>on 
matrix

particle 1 
particle 2
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Input particles 
16 x 3

Self-attention matrix 
16 x 16

encoded particles 
16 x 128

WK, WQ

WV

pa
rt

ic
le

s

features



Mul>-head agen>on
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particle 1 
particle 2

particle 1 
particle 2

particle 1 
particle 2

particle 1 
particle 2



Mul>-head outputs
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particle 1 
particle 2



Input to a subsequent task
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Self-agen>on to encoder
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particle 1 particle 2 particle 3



Permuta>on invariance
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embed input elements 
with FFN

transform input 
elements with multi-
haded self-attention

permutation-invariant 
aggregation

https://www.scipost.org/SciPostPhys.12.6.188/pdf 

https://www.scipost.org/SciPostPhys.12.6.188/pdf
https://www.scipost.org/SciPostPhys.12.6.188/pdf


Point cloud transformer

54

https://arxiv.org/abs/2102.05073

Combine transformer with 
EdgeConv (kNN-based 

neighborhood aggregation) for 
best performance.



Jet tagging via transformers

55

https://arxiv.org/pdf/2202.03772.pdf

Add explicit particle-particle 
interaction terms.



Par>cle agen>on block
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add precomputed 
pairwise features

encoded particle data

project particle to 
Q,K,V space



Class agen>on
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encoded 
particle data

Query 
learnable 


class token



Agen>on as a graph
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https://ai.googleblog.com/2021/03/constructing-transformers-for-longer.html

Full self attention ~ all-to-all dense graph. 
Naively N2 time/memory complexity!



Global vs. local agen>on
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In case the input is an ordered sequence (e.g. a long text, big image), 
attention can be constrained to local regions. 



GNNs vs. Transformers

h:ps://ai.googleblog.com/2020/10/rethinking-a:en4on-with-performers.html

Most state-of-the-art language processing models use an agen>on-based "transformer" 
architecture: a dense agen>on matrix with elements Aij is computed between input elements xi. 

The agen>on matrix A is used to successively transform the input elements.

In GNNs, the learned graph adjacency is usually sparse, but is similarly used to propagate 
informa>on between associated input elements to transform them.
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https://ai.googleblog.com/2020/10/rethinking-attention-with-performers.html
https://ai.googleblog.com/2020/10/rethinking-attention-with-performers.html


Scalable pairwise opera>ons

Kitaev, Nikita, Łukasz Kaiser, and Anselm Levskaya. "Reformer: The efficient transformer." arXiv preprint arXiv:2001.04451 (2020).
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Naive kNN graph / agen>on matrix construc>on (e.g. a.nn.top_k) scales as 
O(N2) with the number of input nodes N.



Approxima>ng the agen>on 
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https://ai.googleblog.com/2020/10/rethinking-attention-with-performers.html

• The hyperparameter m << L of random projec>ons to make for 
each Q, K tunes how closely the agen>on mechanism is 
approximated 

• Does not rely on sparsity / structure in the agen>on matrix



Training on large sequences
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Domain-agnos>c models
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PerceiverIO

https://arxiv.org/abs/2107.14795v3

To what extent can one use a single model architecture on different data domains?



Summary

65

• more assumed structure 
• fewer parameters 
• more scalable on large 

inputs

• less assumed structure 
• more parameters 
• less scalable on large 

inputs

GNN with a fixed 
neighborhood 

graph

dynamic graph

(e.g. EdgeConv, GarNet)

Point Cloud 
Transformer

Particle 
Transformer

Generic models 
(e.g. Perceiver-IO)
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Transformers exercise

68

Jupyter notebook: github, colab

https://github.com/jpata/gnn-hep-lecture/blob/main/self-attention.ipynb
https://colab.research.google.com/github/jpata/gnn-hep-lecture/blob/main/self-attention.ipynb
https://github.com/jpata/gnn-hep-lecture/blob/main/self-attention.ipynb
https://colab.research.google.com/github/jpata/gnn-hep-lecture/blob/main/self-attention.ipynb


Backup
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