

ICS Simulation Results

Daniel Seipt, Dupish d.seipt@hi-jena.gsi.de

Helmholtz Institute Jena

June 27, 2022

Inverse Compton Scattering Principle

atons.	parameter	value
ectron beam	ω_L	4.1 eV
	γ	32290
	ξ	< 0.1
	η	0.518
	$\gamma heta$	$\ll 0.1$
	ω	pprox 8.4 GeV
	E_L	100 mJ
$\omega pprox rac{4\gamma^2 \omega_L}{1+rac{\xi^2}{2}+\gamma^2 heta^2+2\eta}, \qquad \eta pprox rac{2\gamma \omega}{m}$	<u>L</u>	

Simulations: https://github.com/danielseipt/luxeics

www.hi-jena.de

Daniel Seipt (HI Jena)

June 27, 2022

HI JENA

ICS Bandwidth

$$\left(\frac{\Delta\omega}{\omega}\right)^2 = \left(\frac{\Delta\omega_L}{\omega_L}\right)^2 + \left(\frac{\xi^2}{2}\right)^2 + \left(2\frac{\Delta\gamma}{\gamma}\right)^2 + \left(\frac{\gamma^2\Delta\theta_e^2}{\#}\right)^2 + \left(\lceil N_{sc} - 1\rceil\eta\right)^2 + \dots$$

- \blacksquare Bandwidth contribution small: $< 1 \times 10^{-3}$
- $\xi < 0.1$: 2.5 × 10⁻⁵
- $\Delta \gamma / \gamma = 0.1\%$: 4×10^{-6}
- Angular spread: dominant contribution for tight beam focusing
- Number of scatters $N_{sc} = \text{rate} \times \text{pulse duration} < 1: \approx 0$

Curatolo et al, PRAB 20, 080701 (2017)

www.hi-jena.de

HI JENA

- Need $\chi_{\gamma} \sim 1$ at IP for efficient NBW pair production $\Rightarrow \omega_{\gamma}$ as large as possible
- Maximize photon flux at IP to optimize pair yield
- Gamma-profile at IP always \gg strong-laser spot size
- Minimize γ -rays bandwidth for vertex reconstruction?
- \blacksquare given machine emittance $\epsilon,~\gamma\text{-bandwidth}$ is dominated by ebeam angular spread $\Delta\theta\propto\epsilon/\sigma_T$

ICS Parameters

- 100 mJ laser energy in 300 nm light (3rd harmonic of 900 nm) in 1 ps duration
- head-on collision

Daniel Seipt (HI Jena)

- **•** minimal available electron beam spot size at target \approx 5 micron
- All fluxed normalized to 1 BX (100 pC beam charge, 1.4 mm mrad emittance, 16.5 GeV, 0.1% energy spread, $\sigma_I = 20$ micron)

Collision Geometries

- 1. laser focus 5 micron, electron focus variable
- 2. laser focus = electron focus variable
- 3. electrons focused to IP (not target) location

HI JEI

Photon Flux spatially homogeneous at IP

HI JENA

www.hi-jena.de

Daniel Seipt (HI Jena)

June 27, 2022

Spectra at IP

June 27, 2022

HI JENA

Frequency Spectrum at IP

small ebeam

June 27, 2022

large ebeam

Daniel Seipt (HI Jena)

HI JENA Helmholtz Institute lena

www.hi-jena.de

For strongest electron focusing the gamma spectrum becomes broadband.

Cut in photon energies above 8 GeV: flux drops to $\approx 40/\mu m^2$ but flux less sensitive to beam focusing σ_T , w_0

www.hi-jena.de

Ebeam focus at strong IP (Scenario 3)

Not reliable

HI JENA

www.hi-jena.de

11 / 16

e^+e^- Production Sims: PTARMIGAN config

- NBW positron produciton using PTARMIGAN
- Initial plan was to directly import LUXEICS output to PTARMIGAN, but that was not feasible with limited time
- Instead model γ -beam as Gaussian with flux, mean ω and std fitted to LUXEICS data

Positron distributions (PTARMIGAN)

www.hi-jena.de

Daniel Seipt (HI Jena)

13 / 16

HI JENA Helmholtz Institute Jena

Positron Yield per BX

HI JENA Helmholtz Institute Jena

www.hi-jena.de

Daniel Seipt (HI Jena)

June 27, 2022

Positron Yield Comparison

HI JENA Helmholtz Institute Jena

www.hi-jena.de

Daniel Seipt (HI Jena)

15 / 16

Summary:

- 1. Best to focus ebeam as hard as possible (5 micron), but 10 micron might be acceptable
- 2. Photon fluxes as high as $40 65/\mu m^2$
- 3. Positron yield comparable to Bremsstrahlung source

Outlook:

- 1. Include $\gamma\text{-ray}$ polarization in ICS sims
- 2. Background studies ...
- 3. More detailed technical design of the ICS layout

www.hi-jena.de