EDM4hep and PODIO

Introduction and Overview

AI D A This project has received funding from the
i nnova European Union’s Horizon 2020 Research and

Innovation programme under grant agree-
ment No 101004761

Thomas Madlener
for the Key4hep team

EIC CompSW Weekly Meeting
June 15, 2022

The EDM at the core of HEP software

J\Event Data Model: EDM4hep

))

Analysis

enerator

struction
Overlay

Digitization
Tracking

Whizard, Vertexing
Jet Clustering

Flavor Tagging

PFA

TT

[Detector Geometry: Icgeo (DD4hep)

- Different components of HEP experiment software have to talk to each other
- The event data model defines the language for this communication
- Users express their ideas in the same language

June 15, 2022 T.Madlener | EDMzhep and podio 1

EDM4hep goals

- The Key4hep project aims to define a common software stack for all future
collider projects

- Regular contributions from ILC, CLIC, FCC-ee & FCC-hh, CEPC, EIC (ATHENA), ...

- EDM4hep is the shared, common EDM that can be used by all communities in
the Key4hep project

- Support different use cases from these communities
- Different collision environments lead to different requirements for an EDM

- Efficiently implemented, support multi-threading and have heterogeneous
resources in mind

- Build on past experience from fcc-edm and LCIO, which has already been
succesfully shared by the LC communities

June 15, 2022 T.Madlener | EDM4hep and podio 2

EDM4hep schema

| EDM4hep DataModel Overview (v0.4) |

RawCalorimeterHit
ParticlelD
~

SimCalorimeterHit
% = cRecoCalonssociation [CalorimeterHitk\ Ciust //
~ uster
<O

CaloHitContribution //
/ WCcRed

OO 1 — |

MCParticle (= ReconstructedPartlcle

\ O ——
\; Track
_ | uerecomme—7 yTrackerHit i @) Vertex
SimTrackerHit =——| - e ertiie)
TPCHit rackerHitPlane

Reconstruction &

Monte Carlo Raw Data | Digitization Analysis

June 15, 2022 T.Madlener | EDM4hep and podio 3

podio as generator for EDM4hep

(*podio code
generator)

/ =

- Traditionally HEP c++ EDMs are heavily
Object Oriented

- Use podio to generate thread safe code
starting from a high level description

class MCParticleDataf]
int PDG;
float charge;

Members :
- int PDG

- float charge
- double mass
- Vector3d vertex]

double mass;
Vector3d vertex;

- Provide an easy to use interface to the
users

) AIDASoft/podio

June 15, 2022 T.Madlener | EDM4hep and podio 4

https://github.com/AIDASoft/podio

The three layers of podio

- podio favors composition over inheritance and uses plain-old-data (POD)
types wherever possible
- Layered design allows for efficient memory layout and performant 1/0

implementation
HitCollection

User Layer

HitObject Object Layer

Y

HitData POD Layer

June 15, 2022 T.Madlener | EDM4hep and podio 5

podio - datamodel definition

components:
edm4hep: :Vector3f:

*
Members: [float x, float y, float z] extracted from

datatypes:
edm&hep: :ReconstructedParticle:
Description: "Reconstructed Particle"
Author : "F.Gaede, DESY"
Members:
- edm&hep::Vector3f momentum

- std::array<float, 10> covMatrix
OneToOneRelations:

// [GeV] particle momentum
// energy-momentum covariance

- edm4hep::Vertex startVertex // start vertex associated to this particle
OneToManyRelations:

- edm4hep::Cluster clusters // clusters that have been used for this particle

- edm&hep::ReconstructedParticle particles // associated particles
ExtraCode:

declaration: "bool isCompund() const { return particles_size() > 0; }\n"
edm&hep: :ParticlelID:
VectorMembers:
- float parameters // hypothesis params

- Reusable components - 1-1and 1- N relations
- Fixed sized arrays as members - Additional user-provided code

- VectorMembers for variable sized array members
June 15, 2022

T.Madlener | EDM4hep and podio

https://github.com/key4hep/EDM4hep/blob/master/edm4hep.yaml

podio - features of generated code

P I L R L R A L A R L A ST IO < C++17 code with “value semantics”
// ... fill ...

for (auto reco : recos) {
auto vtx = reco.getStartVertex();
for (auto rp : reco.getParticles()) {
; UGS Mo = FEoEE EmemE e 1 Python bindings via PyROOT
} recos = ReconstructedParticleCollection()
#... fill ...
for reco in recos:
vtx = reco.getStartVertex()
for rp in reco.getParticles():
mom = rp.getMomentum()

ROOT.RDataFrame('events', 'events.root')

(d.Define('abs_pdg', 'abs(Particle.PDG)')
.Define('mu_sel', 'abs_pdg == 13')
.Define('mu_px",

< Using RDataFrame to read ROOT

"Particle.momentum.x[mu_sel]") files
.HistolD('mu_px'))
h.DrawCopy()

June 15, 2022 T.Madlener | EDM4hep and podio

podio supports different /0 backends

Default ROOT backend

- POD buffers are stored as

branchesina TTree

- Files can be interpreted without

EDM library(!)

Can be used in RDataFrame or

with uproot
Alternative SIO backend

- Persistency library used in LCIO
Complete events are stored as

binary records

Adding more I/0 backends is

possible

o8]

A pythia_sorverter_output_ss_2_bbbar root
#levents;1
- ReconstructedParticees

& RecanstructedFarticles type

3 Feconstructed Partilss snergy

i Feconstructed Fartiles romentum x
R ReconstructedParticts sromentur
% RecarstructedParticles.mementum 2
3% Recoratructed Particles referencePoint
5 RecoratrutedParticles referencePoint y.
3 Reconstructed Fartiles referencePoint 2
I Fconstructed Partils chiarge

A Reconstructed Fartilss rass

i Feconstructed Parties. gooriness OTFID
R Reconstructed Particts covMatris[10]
% RecarstructedParticles.clusters_begin
3% RecarstructedParticles.clusters_end
b Recorstructed Particles. tracks_begin
3 Reconstructed Partile tracks_end

Iy ReconstructedPartices partiles_begin
A Rconstructed Partils prtilss_nd
i Feconstructed Fartiles. partileIDs_begin
i Feconstructed Partiles particleIDs_end
B@sz

ReconstructedParticeshd
ReconsirustecPartiieas!
ReconstructedPartickos2
ReconstructedPartickos3
ReconstructecPartickssd
ReconstructedFarticks#s

Partide

Fartidesd

Partice#!

#|metaciatn;t

#]run_metadata;t

et _metactota;t
3 |ool_metadata;

ERRERRERERR

June 15, 2022

T.Madlener | EDM4hep and podio

ReconstructedParticles.energy
iemp

Enios 666451

Vean 5799

StdDev 1234

|
80 100
ReconstructedParticies.energy

Collection
jovi] |

1/0
Backend

CMake interface for projects using podio

(PODIO)

generate the c++ code from the yaml definition
(edm4hep edmshep.yaml headers sources IO_BACKEND_HANDLERS "ROOT;SIO")
compile the core data model shared library (no I/0)
(edm&hep "${headers}" "${sources}")

generate and compile the ROOT I/O dictionary

(edm4hepDict edmzhep "${headers}" src/selection.xml)
compile the SIOBlocks shared library for the SIO backend

(edmshep "${headers}" "${sources}")

Install the created targets
(TARGETS edm4hep edm4hepDict edm4hepSioBlocks)

- Easy to use functions for integrating a podio generated EDM into a project
- Split into core EDM library and 1/0 handling for different backends

- Pick what you need
- 1/0 handling parts dynamically loaded by podio on startup

June 15, 2022 T.Madlener | EDM4hep and podio

podio support in framework(s)

- podio has been used by fcc-edm
- () keyzhep/ksFWCore provides Gaudi integration for podio generated EDMs
- Originally developed for FCCSW, now adapted by Key4hep

- juggler has essentially the same functionality as k4FWCore
- Developed in the context of ATHENA
- Essentially re-implementation(s) of “standalone” ROOT writers/readers of
podio
- Including some differences that snuck in over time

June 15, 2022 T.Madlener | EDM4hep and podio 10

https://github.com/HEP-FCC/fcc-edm
https://github.com/key4hep/k4FWCore
https://eicweb.phy.anl.gov/EIC/juggler

Currently ongoing work

- Schema evolution of generated EDMs

- Leverage existing code generation facilities

- Allow for user intervention for non-trivial cases (e.g. change of coordinate
system)

- Incrementally implement required features

- Foresee the possibility to exploit existing schema evolution from /0 backend

(e.g. ROOT)
- podio: :Frame - a generalized (event) data container
- Offer a flexible mechanism for organizing data into different categories (e.g.

Run, Event, ...)
- Easy to use, thread-safe interface

June 15, 2022 T.Madlener | EDM4hep and podio M

Future plans

- Release v1.0 with backwards compatibility from then on
- After schema evolution and Frame have been implemented / merged
- Consolidate the different I/0 implementations (“standalone” vs. different
framework implementations)
- Implement missing features (from our perspective)

- User defined relations/associations between arbitrary types

- Interface types that allow for easier high level workflows (e.g. tracker hits for
different technologies)

- Implement existing feature requests from community

- Make it possible to extend an existing EDM () AIDASoft/podio#263)
- Allow for default initialization values in datatypes () AIDASoft/podio#266)

- Start exploring usage on heterogeneous resources

June 15, 2022 T.Madlener | EDM4hep and podio 12

https://github.com/AIDASoft/podio/pull/263
https://github.com/AIDASoft/podio/pull/266

Experience using EDM4hep and podio

- EDM4hep is actively used for physics and detector studies and the main
“customer” of podio
- “Re-implemented” by eicd
- Adapted EDM4hep after first using their own podio generated EDM
- Defines a few extra data types
- Biweekly meetings to discuss podio and EDM4hep
- indico.cern.ch/category/11461/ - Tuesdays at 9:00AM (CEST), but US friendly
timeslot possible
- Community effort is very successful

- No showstoppers observed so far
- Problems / issues are usually resolved quickly
- Biggest issue so far has been missing schema evolution

June 15, 2022 T.Madlener | EDM4hep and podio 13

https://eicweb.phy.anl.gov/EIC/eicd
https://indico.cern.ch/category/11461/

- EDM4hep is the shared, common EDM for the Key4hep project

- It is generated via the podio EDM toolkit
- Tackling schema evolution and adding the Frame are the major milestones
for podio v1.0
- Some additional features will be tackled after that
- EDM4hep is successfully used for physics and detector studies

- Community effort is a success
- Also happy to welcome new contributors and communities

June 15, 2022 T.Madlener | EDM4hep and podio 14

Pointers to software (re)sources

- Key4hep
key4hep.github.io/key4hep-doc
Q) keyzhep - github organisation

- EDM4hep MAN, | SUCK AT THIS GAME .
CAN YOU GIVE ME.
) key4hep/EDM4hep A FEW POINTERS?
0x3A28213A
cern.ch/edmshep [Ox 6339292C,
Ox7353532£.
* podio | HATE You

) AIDASoft/podio g %

- kaMarlinWrapper
) keyshep/kaMarlinWrapper xkcd.com/138

- FCCAnalyses
) HEP-FCC/FCCAnalyses

June 15, 2022 T.Madlener | EDM4hep and podio 15

https://key4hep.github.io/key4hep-doc/index.html
https://github.com/key4hep
https://github.com/key4hep/EDM4hep
https://key4hep.github.io/EDM4hep/doc/latest/index.html
https://github.com/AIDASoft/podio
https://github.com/key4hep/k4MarlinWrapper
https://github.com/HEP-FCC/FCCAnalyses
https://xkcd.com/138/

LCIO vs EDM4hep

LCIO EDM4hep

Monte Carlo | EDM4hep DataModel Overview (v0.4) \

SlmTrackerHut SimCalorimeterHit
RawCalorimeterHit
LCRolation LCRG'@Z@_\D: < . - ParticlelD
TrackerRawDa;a SimCalorimeterHit _| \
[T = —>"calorimeterHit
! A imeter e

RawData \Mi%‘ CaloHltConmbuuon / \Cluster /

i

\

[TrackerPulse p
\

N v

B Trackertit i MCPamCle ‘ = P ReconstructedPamcle
Digitization CalonmeterHll \ e
\\\\

Track
Track Cluster | woRecomrackerhsseS I rackerHit =7 > Vertex
SimTrackerHit < :
e TrackerHitPlane
Reconstruction & TRCHt Reconstruction &
Analysis Monte Carlo iqitizati ;
= Raw Data | Digitization Analysis

- Since EDM4hep is based on LCIO the high-level structure is very similar
- Largest differences between the two are due to their implementations

- LCIO has over 15 years of usage. A lot of time to develop tools for it.
- Not nearly as far with EDM4hep

June 15, 2022 T.Madlener | EDM4hep and podio 1

Interface types

- LCIO uses “classic” polymorphism
- Common LCObject base type for

Icrtrel:LCRTRelations a H d ata types
EVENT-LCObjct - Impl classes offer the mutable
interface
TR [EeTmweowT| [Eemmmese] © 1NIS IS Used in some places to add
some structure to data types
IMPL::TrackerHitPlanelmpl IMPL:TrackerHitZCylinderimpl IMPL:Tracke rHitZCylinderimpl
- Eg TrackerHit has various
IOIMPL:TrackerHitPlanelOlmpl I0IMPL::TrackerHitZCylinderiOlmpl I0IMPL:TrackerHitZCylinderlOlmpl

implementations different
detector technologies

- Not solved for podio (and EDMzhep)

June 15, 2022 T.Madlener | EDM4hep and podio 2

kaMarlinWrapper

- Wraps Marlin processor in a Gaudi algorithm and allows to run them

unchanged
- Canrun a full ILD / CLIC reconstruction and analysis chain via Gaudi

- Converter script to turn Marlin XML steering files into Gaudi python option

files
- Automatic, on-the-fly conversion between LCIO and EDM4hep

- Allows to “mix and match” existing Marlin processors with Gaudi algorithms
Prev. Next alg.

algorithm e.g. ACTS

— 1 O

LCIO2EDM&hep
converter

011
ndino
011
!
nduy
dayria3

MarlinProcessorWrapper

ndino
dayrwa3
|
|
g
1ndu)

EDM4hep2LCIO
converter

elep
dayywa3
elep
011
elep
011
elep
dayria3l

June 15, 2022 T.Madlener | EDM4hep and podio

FCCAnalyses

- FCCAnalyses is a python analysis
framework based on RDataFrame

- Comes with high level reco
functionality
- Extensible via C++

- Not specific to FCC! Can be run with
EDM4hep inputs

- Declarative style of the analysis

- Currently being reworked for
improved usability

June 15, 2022

) HEP-FCC/FCCAnalyses

(self.df
define an alias for muon index collection
.Alias("Muone", "Muon#e.index")

define the muon collection
.Define("muons", "ReconstructedParticle::get(Muon@, ReconstructedParticles)"
#select muons on pT

.pefine(“selected,muoﬁ" "ReconstructedParticle::sel pt(10.)(muoE)”)

variables = {
"mz": {"name": "zed_leptonic_m","title":"m_{z} [6ev]","bin":125, "xmin":0, "xmax":256},
"mz_zoon": {"name": "zed_leptonic_m", "title":"m_{z} [Gev]","bin":4e, "xmin":86, "xmax":100},
"leptonic_recoil_m":{"name":"zed_leptonic_recoil_m","title":"z leptonic recoil [Gev]","bi
"leptonic_recoil_m_zoom":{"name"

"zed_leptonic_recoil_m", "title"

'z leptonic recoil [GeV]
"leptonic_recoil m_zoom1": {"nam
"leptonic_recoil m_zoom2": {"nam
"leptonic_recoil_m_zooms": {"nam

ed_leptonic_recoil m", "title leptonic recoil [Gev

ed_leptonic_recoil m","title leptonic recoil [Gev

ed_leptonic_recoil m","title leptonic recoil [Gev

"leptonic_recoil_m_zooma" : {"nam ed_leptonic_recoil m", "title":"Z leptonic recoil [Gev
:

find zed candidates from di-muon resonances
.Define("zed_leptonic", "ReconstructedParticle: :resonanceBuilder (91)(
write branch with zed mass
.pefine("zed_leptonic_m", "ReconstructedParticle: :get_mass(zed_leptonic
write branch with zed transverse momenta

.Define("zed_leptonic_pt", "ReconstructedParticle: :get_pt(zed_leptonic)"
calculate recoil of zed_leptonic

.Define("zed_leptonic_recoil”, "ReconstructedParticle::recoilBuilder(240)(ze
write branch with recoil mass

.Define("zed_leptonic_recoil_m", "ReconstructedParticle: :get_mass(zed_leptonic

Define("zed lentonic charge" "ReconstructedParticle::get charage(zed lentonic

T.Madlener | EDM4hep and podio 4

https://github.com/HEP-FCC/FCCAnalyses

podio: :Frame basics

- Ownership of the data reflected in

immutable references the interface
(Frame) . Collection - Immutable access only for stored
Collection —: Collection ! data
— | TTUTTTTY - Mutable user owned data has to
Collection

[Collection] be explicitly moved into the Frame

* - Defines an interval of validity or

° mutable owned by user
* \— category for the stored data (e.g.
collections are

moved into Frame RU n’ EVe nt,)

- Thread-safe

[Parameters / Metadata]

\, J

- First version being tested
-) AIDASoft/podio#287

June 15, 2022 T.Madlener | EDM4hep and podio 5

https://github.com/AIDASoft/podio/pull/287

	Appendix

