
EDM4hep and PODIO
Introduction and Overview

This project has received funding from the
European Union’s Horizon 2020 Research and
Innovation programme under grant agree-
ment No 101004761.

Thomas Madlener
for the Key4hep team

EIC CompSW Weekly Meeting
June 15, 2022

The EDM at the core of HEP software

• Different components of HEP experiment software have to talk to each other
• The event data model defines the language for this communication
• Users express their ideas in the same language

June 15, 2022 T.Madlener | EDM4hep and podio 1

EDM4hep goals

• The Key4hep project aims to define a common software stack for all future
collider projects

• Regular contributions from ILC, CLIC, FCC-ee & FCC-hh, CEPC, EIC (ATHENA), ...
• EDM4hep is the shared, common EDM that can be used by all communities in
the Key4hep project

• Support different use cases from these communities
• Different collision environments lead to different requirements for an EDM

• Efficiently implemented, support multi-threading and have heterogeneous
resources in mind

• Build on past experience from fcc-edm and LCIO, which has already been
succesfully shared by the LC communities

June 15, 2022 T.Madlener | EDM4hep and podio 2

EDM4hep schema

EDM4hep DataModel Overview (v0.4)

Monte Carlo DigitizationRaw Data
Reconstruction &

Analysis

MCRecoParticleAssociation

MCRecoTrackerAssociation

MCRecoCaloAssociation

MCRecoCaloParticleAssociation

June 15, 2022 T.Madlener | EDM4hep and podio 3

podio as generator for EDM4hep

• Traditionally HEP c++ EDMs are heavily
Object Oriented

• Use podio to generate thread safe code
starting from a high level description

• Provide an easy to use interface to the
users

.cc
.cc

class MCParticleData{
 int PDG;
 float charge;
 double mass;
 Vector3d vertex;
};

.h/.cc

MCParticle:
 Members:
 - int PDG
 - float charge
 - double mass
 - Vector3d vertex

YAML

(*podio code
generator) +=

AIDASoft/podio

June 15, 2022 T.Madlener | EDM4hep and podio 4

https://github.com/AIDASoft/podio

The three layers of podio

• podio favors composition over inheritance and uses plain-old-data (POD)
types wherever possible

• Layered design allows for efficient memory layout and performant I/O
implementation

June 15, 2022 T.Madlener | EDM4hep and podio 5

podio - datamodel definition
components:

edm4hep::Vector3f:
Members: [float x, float y, float z]

datatypes:
edm4hep::ReconstructedParticle:

Description: "Reconstructed Particle"
Author : "F.Gaede, DESY"
Members:

- edm4hep::Vector3f momentum // [GeV] particle momentum
- std::array<float, 10> covMatrix // energy-momentum covariance

OneToOneRelations:
- edm4hep::Vertex startVertex // start vertex associated to this particle

OneToManyRelations:
- edm4hep::Cluster clusters // clusters that have been used for this particle
- edm4hep::ReconstructedParticle particles // associated particles

ExtraCode:
declaration: "bool isCompund() const { return particles_size() > 0; }\n"

edm4hep::ParticleID:
VectorMembers:

- float parameters // hypothesis params

• Reusable components
• Fixed sized arrays as members
• VectorMembers for variable sized array members

• 1 – 1 and 1 – N relations
• Additional user-provided code

June 15, 2022 T.Madlener | EDM4hep and podio 6

*extracted from edm4hep.yaml

https://github.com/key4hep/EDM4hep/blob/master/edm4hep.yaml

podio - features of generated code

June 15, 2022 T.Madlener | EDM4hep and podio 7

auto recos = ReconstructedParticleCollection();
// ... fill ...
for (auto reco : recos) {
auto vtx = reco.getStartVertex();
for (auto rp : reco.getParticles()) {
auto mom = rp.getMomentum();

}
}

← c++17 code with “value semantics”

↓ Python bindings via PyROOT
recos = ReconstructedParticleCollection()
#... fill ...
for reco in recos:
vtx = reco.getStartVertex()
for rp in reco.getParticles():

mom = rp.getMomentum()

d = ROOT.RDataFrame('events', 'events.root')
h = (d.Define('abs_pdg', 'abs(Particle.PDG)')

.Define('mu_sel', 'abs_pdg == 13')

.Define('mu_px',
'Particle.momentum.x[mu_sel]')

.Histo1D('mu_px'))
h.DrawCopy()

← Using RDataFrame to read ROOT
files

podio supports different I/O backends

• Default ROOT backend
• POD buffers are stored as
branches in a TTree

• Files can be interpreted without
EDM library(!)

• Can be used in RDataFrame or
with uproot

• Alternative SIO backend
• Persistency library used in LCIO
• Complete events are stored as
binary records

• Adding more I/O backends is
possible

June 15, 2022 T.Madlener | EDM4hep and podio 8

Obj

Collection
ObjectID

Data

Relations

Vector
Members

I/O
Backend

POD buffers

CMake interface for projects using podio

June 15, 2022 T.Madlener | EDM4hep and podio 9

find_package(PODIO)

generate the c++ code from the yaml definition
PODIO_GENERATE_DATAMODEL(edm4hep edm4hep.yaml headers sources IO_BACKEND_HANDLERS "ROOT;SIO")
compile the core data model shared library (no I/O)
PODIO_ADD_DATAMODEL_CORE_LIB(edm4hep "${headers}" "${sources}")
generate and compile the ROOT I/O dictionary
PODIO_ADD_ROOT_IO_DICT(edm4hepDict edm4hep "${headers}" src/selection.xml)
compile the SIOBlocks shared library for the SIO backend
PODIO_ADD_SIO_IO_BLOCKS(edm4hep "${headers}" "${sources}")

Install the created targets
install(TARGETS edm4hep edm4hepDict edm4hepSioBlocks)

• Easy to use functions for integrating a podio generated EDM into a project
• Split into core EDM library and I/O handling for different backends

• Pick what you need
• I/O handling parts dynamically loaded by podio on startup

podio support in framework(s)

• podio has been used by fcc-edm
• key4hep/k4FWCore provides Gaudi integration for podio generated EDMs

• Originally developed for FCCSW, now adapted by Key4hep
• juggler has essentially the same functionality as k4FWCore

• Developed in the context of ATHENA
• Essentially re-implementation(s) of “standalone” ROOT writers/readers of
podio

• Including some differences that snuck in over time

June 15, 2022 T.Madlener | EDM4hep and podio 10

https://github.com/HEP-FCC/fcc-edm
https://github.com/key4hep/k4FWCore
https://eicweb.phy.anl.gov/EIC/juggler

Currently ongoing work

• Schema evolution of generated EDMs
• Leverage existing code generation facilities
• Allow for user intervention for non-trivial cases (e.g. change of coordinate
system)

• Incrementally implement required features
• Foresee the possibility to exploit existing schema evolution from I/O backend
(e.g. ROOT)

• podio::Frame - a generalized (event) data container
• Offer a flexible mechanism for organizing data into different categories (e.g.
Run, Event, ...)

• Easy to use, thread-safe interface

June 15, 2022 T.Madlener | EDM4hep and podio 11

Future plans

• Release v1.0 with backwards compatibility from then on
• After schema evolution and Frame have been implemented / merged

• Consolidate the different I/O implementations (“standalone” vs. different
framework implementations)

• Implement missing features (from our perspective)
• User defined relations/associations between arbitrary types
• Interface types that allow for easier high level workflows (e.g. tracker hits for
different technologies)

• Implement existing feature requests from community
• Make it possible to extend an existing EDM (AIDASoft/podio#263)
• Allow for default initialization values in datatypes (AIDASoft/podio#266)

• Start exploring usage on heterogeneous resources

June 15, 2022 T.Madlener | EDM4hep and podio 12

https://github.com/AIDASoft/podio/pull/263
https://github.com/AIDASoft/podio/pull/266

Experience using EDM4hep and podio

• EDM4hep is actively used for physics and detector studies and the main
“customer” of podio

• “Re-implemented” by eicd
• Adapted EDM4hep after first using their own podio generated EDM
• Defines a few extra data types

• Biweekly meetings to discuss podio and EDM4hep
• indico.cern.ch/category/11461/ - Tuesdays at 9:00AM (CEST), but US friendly
timeslot possible

• Community effort is very successful
• No showstoppers observed so far
• Problems / issues are usually resolved quickly
• Biggest issue so far has been missing schema evolution

June 15, 2022 T.Madlener | EDM4hep and podio 13

https://eicweb.phy.anl.gov/EIC/eicd
https://indico.cern.ch/category/11461/

Summary

• EDM4hep is the shared, common EDM for the Key4hep project
• It is generated via the podio EDM toolkit
• Tackling schema evolution and adding the Frame are the major milestones
for podio v1.0

• Some additional features will be tackled after that

• EDM4hep is successfully used for physics and detector studies
• Community effort is a success

• Also happy to welcome new contributors and communities

June 15, 2022 T.Madlener | EDM4hep and podio 14

Pointers to software (re)sources

• Key4hep
key4hep.github.io/key4hep-doc

key4hep - github organisation
• EDM4hep

key4hep/EDM4hep
cern.ch/edm4hep

• podio
AIDASoft/podio

• k4MarlinWrapper
key4hep/k4MarlinWrapper

• FCCAnalyses
HEP-FCC/FCCAnalyses

xkcd.com/138

June 15, 2022 T.Madlener | EDM4hep and podio 15

https://key4hep.github.io/key4hep-doc/index.html
https://github.com/key4hep
https://github.com/key4hep/EDM4hep
https://key4hep.github.io/EDM4hep/doc/latest/index.html
https://github.com/AIDASoft/podio
https://github.com/key4hep/k4MarlinWrapper
https://github.com/HEP-FCC/FCCAnalyses
https://xkcd.com/138/

June 15, 2022 T.Madlener | EDM4hep and podio 15

Supplementary
Material

LCIO vs EDM4hep
LCIO EDM4hep

EDM4hep DataModel Overview (v0.4)

Monte Carlo DigitizationRaw Data
Reconstruction &

Analysis

MCRecoParticleAssociation

MCRecoTrackerAssociation

MCRecoCaloAssociation

MCRecoCaloParticleAssociation

• Since EDM4hep is based on LCIO the high-level structure is very similar
• Largest differences between the two are due to their implementations
• LCIO has over 15 years of usage. A lot of time to develop tools for it.

• Not nearly as far with EDM4hep

June 15, 2022 T.Madlener | EDM4hep and podio 1

Interface types

• LCIO uses “classic” polymorphism
• Common LCObject base type for
all data types

• Impl classes offer the mutable
interface

• This is used in some places to add
some structure to data types

• E.g. TrackerHit has various
implementations different
detector technologies

• Not solved for podio (and EDM4hep)

June 15, 2022 T.Madlener | EDM4hep and podio 2

k4MarlinWrapper

• Wraps Marlin processor in a Gaudi algorithm and allows to run them
unchanged

• Can run a full ILD / CLIC reconstruction and analysis chain via Gaudi
• Converter script to turn Marlin XML steering files into Gaudi python option
files

• Automatic, on-the-fly conversion between LCIO and EDM4hep
• Allows to “mix and match” existing Marlin processors with Gaudi algorithms

Prev.
algorithm

EDM
4hep

Output

MarlinProcessorWrapper

LCIO

Input

LCIO

Output
Next alg.
e.g. ACTS

EDM
4hep

Input

EDM
4hep

data

EDM4hep2LCIO
converter

LCIO
data

LCIO
data

LCIO2EDM4hep
converter

EDM
4hep

data

June 15, 2022 T.Madlener | EDM4hep and podio 3

FCCAnalyses

• FCCAnalyses is a python analysis
framework based on RDataFrame

• Comes with high level reco
functionality

• Extensible via C++

• Not specific to FCC! Can be run with
EDM4hep inputs

• Declarative style of the analysis
• Currently being reworked for
improved usability

June 15, 2022 T.Madlener | EDM4hep and podio 4

HEP-FCC/FCCAnalyses

https://github.com/HEP-FCC/FCCAnalyses

podio::Frame basics

Frame

Collection

Collection

Collection

Collection

Collection

Collection

immutable references

mutable owned by user

collections are
moved into Frame

Parameters / Metadata

• Ownership of the data reflected in
the interface

• Immutable access only for stored
data

• Mutable user owned data has to
be explicitly moved into the Frame

• Defines an interval of validity or
category for the stored data (e.g.
Run, Event, ...)

• Thread-safe
• First version being tested

• AIDASoft/podio#287

June 15, 2022 T.Madlener | EDM4hep and podio 5

https://github.com/AIDASoft/podio/pull/287

	Appendix

